

Acta Crystallographica Section E **Structure Reports** Online ISSN 1600-5368

1-[(6-Chloropyridin-3-yl)methyl]-10nitro-1,2,3,5,6,7,8,9-octahydro-5,9methanoimidazo[1,2-a]azocin-5-ol

Shu-Xia Cui, Guang-You Zhang and Zhong-Zhen Tian*

Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China

Correspondence e-mail: chm_tianzz@ujn.edu.cn

Received 10 April 2013; accepted 24 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.071; wR factor = 0.217; data-to-parameter ratio = 13.5.

In the title compound, $C_{16}H_{19}ClN_4O_3$, the cyclohexane ring displays a chair formation and the tetrahydropyridine ring displays an envelope conformation with the methylene C atom as the flap; the imidazolidine ring also displays an envelope conformation with a methylene C atom as the flap. In the crystal, $O-H \cdots N$ hydrogen bonds between hydroxy groups and pyridine rings link inversion-related molecules into dimers. Weak C-H···O hydrogen bonds further link the dimers into supramolecular chains running along the c axis.

Related literature

For background to the title compound, see: Jeschkel & Nauen (2008). For the synthesis, see: Tian et al. (2007).

Experimental

Crystal data C16H19ClN4O3

 $M_r = 350.80$

•	
organic	compounds
o game	compoundo

1 0 ...

Monoclinic, $P2_1/c$	Z = 4
a = 13.3975 (14) Å	Mo $K\alpha$ radiation
b = 18.7124 (18) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 6.5721 (8) Å	T = 296 K
$\beta = 97.897 \ (10)^{\circ}$	$0.38 \times 0.24 \times 0.23$ mm
V = 1632.0 (3) Å ³	

Data collection

Bruker APEAII diffractometer	7/05 measured reflections
Absorption correction: multi-scan	2921 independent reflections
(SADABS; Bruker, 2001)	1727 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.93, T_{\max} = 0.94$	$R_{\rm int} = 0.056$
Refinement	

7705

$R[F^2 > 2\sigma(F^2)] = 0.071$	217 parameters
$wR(F^2) = 0.217$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
2921 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots N4^{i}$ $C11-H11A\cdots O1^{ii}$ $C13-H13\cdots O2^{ii}$	0.82 0.97 0.93	2.04 2.53 2.48	2.855 (4) 3.467 (5) 3.265 (5)	174 161 142
			21202 (2)	

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z - 1.

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20902037), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (grant No. BS2010NY001), and the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant No. SKLCB-2008-08).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5695).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jeschkel, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084-1098.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tian, Z.-Z., Shao, X.-S., Li, Z., Qian, X.-H. & Huang, Q.-C. (2007). J. Agric. Food Chem. 55, 2288-2292.

supporting information

Acta Cryst. (2013). E69, o1015 [https://doi.org/10.1107/S1600536813014402]

1-[(6-Chloropyridin-3-yl)methyl]-10-nitro-1,2,3,5,6,7,8,9-octahydro-5,9-methanoimidazo[1,2-a]azocin-5-ol

Shu-Xia Cui, Guang-You Zhang and Zhong-Zhen Tian

S1. Comment

The past decades have witnessed the great power and versatile ability of neonicotinoids as a novel class of insecticides (Jeschkel & Nauen, 2008), Several commercial neonicotinoid compounds were launched successively in the latest two decades, and they presented a broad spectrum performance in controlling various insects. Our interest was introducing bicyclic struture to fix the direction of the nitro group, and synthesized a class of novel *cis*-neonicotinoid compounds with carbon bicyclic, in which the title compound exhibited good insecticidal activities against pea aphids.

The structure of compound is shown in Fig. 1 with the atom-numbering scheme. In the title compound, the the cyclohexane ring displays a chair formation while the hexahydroazocine ring displays an envelope conformation with the methylene C atom on the flap; the imidazolidine ring also displays an envelope confromation with a methylene C atom on the flap. In the crystal, intermolecular O—H···N hydrogen bonds between hydroxyl groups and pyridine rings link inversion-related molecules into dimer. Weak C—H···O hydrogen bonds further link the dimers into the supramolecular arichiecture.

S2. Experimental

The title compound was synthesized according to the literature (Tian *et al.*, 2007). Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of dichloromethane and ether of the title compound.

S3. Refinement

Hydroxyl H atom was located in a difference map and refined with distance restraints of O—H = 0.82 Å, $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as circles of arbitrary size.

1-[(6-Chloropyridin-3-yl)methyl]-10-nitro-1,2,3,5,6,7,8,9-octahydro-5,9-methanoimidazo[1,2-a]azocin-5-ol

Crystal data

C₁₆H₁₉ClN₄O₃ $M_r = 350.80$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.3975 (14) Å b = 18.7124 (18) Å c = 6.5721 (8) Å $\beta = 97.897$ (10)° V = 1632.0 (3) Å³ Z = 4

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.03 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.93, T_{\max} = 0.94$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.217$ S = 1.05 F(000) = 736 $D_x = 1.428 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1166 reflections $\theta = 2.6-25.2^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.38 \times 0.24 \times 0.23 \text{ mm}$

7705 measured reflections 2921 independent reflections 1727 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 25.2^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -16 \rightarrow 16$ $k = -21 \rightarrow 22$ $l = -7 \rightarrow 6$

2921 reflections217 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_0^2) + (0.1042P)^2 + 0.1363P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	-0.41200 (9)	0.65584 (9)	0.0781 (3)	0.0997 (6)	
N1	0.1452 (3)	0.65779 (16)	0.7861 (5)	0.0462 (9)	
N2	0.2189 (2)	0.53441 (15)	0.4048 (5)	0.0366 (8)	
N3	0.0721 (2)	0.59219 (15)	0.3726 (5)	0.0437 (8)	
N4	-0.2457 (2)	0.63479 (18)	0.3227 (6)	0.0571 (10)	
01	0.1870 (2)	0.69232 (16)	0.9378 (5)	0.0673 (9)	
O2	0.0505 (2)	0.65481 (15)	0.7522 (5)	0.0588 (8)	
O3	0.35157 (19)	0.45270 (13)	0.4224 (4)	0.0510 (8)	
H3	0.3216	0.4252	0.4901	0.077*	
C1	0.1637 (3)	0.58526 (18)	0.4877 (6)	0.0373 (9)	
C2	0.1721 (3)	0.5161 (2)	0.1983 (6)	0.0533 (11)	
H2A	0.1769	0.4653	0.1716	0.064*	
H2B	0.2017	0.5427	0.0949	0.064*	
C3	0.0639 (3)	0.5387 (2)	0.2069 (7)	0.0563 (12)	
H3A	0.0341	0.5594	0.0774	0.068*	
H3B	0.0233	0.4984	0.2386	0.068*	
C4	0.2050 (3)	0.62191 (19)	0.6634 (6)	0.0388 (9)	
C5	0.3162 (3)	0.61790 (18)	0.7288 (6)	0.0443 (10)	
H5	0.3302	0.6297	0.8751	0.053*	
C6	0.3494 (3)	0.54049 (19)	0.6983 (6)	0.0455 (10)	
H6A	0.4208	0.5352	0.7467	0.055*	
H6B	0.3123	0.5080	0.7752	0.055*	
C7	0.3281 (3)	0.52359 (18)	0.4689 (6)	0.0388 (9)	
C8	0.3893 (3)	0.57185 (19)	0.3484 (7)	0.0477 (10)	
H8A	0.3741	0.5609	0.2032	0.057*	
H8B	0.4605	0.5630	0.3904	0.057*	
C9	0.3664 (3)	0.65028 (19)	0.3831 (7)	0.0515 (11)	
H9A	0.4128	0.6797	0.3188	0.062*	
H9B	0.2987	0.6609	0.3177	0.062*	
C10	0.3751 (3)	0.6691 (2)	0.6090 (7)	0.0564 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H10A	0.3502	0.7173	0.6229	0.068*	
H10B	0.4455	0.6682	0.6680	0.068*	
C11	0.0317 (3)	0.66343 (18)	0.3105 (6)	0.0400 (9)	
H11A	0.0647	0.6811	0.1980	0.048*	
H11B	0.0465	0.6963	0.4248	0.048*	
C12	-0.0792 (3)	0.66095 (16)	0.2453 (6)	0.0347 (9)	
C13	-0.1215 (3)	0.68244 (19)	0.0504 (6)	0.0450 (10)	
H13	-0.0801	0.6977	-0.0435	0.054*	
C14	-0.2246 (3)	0.6813 (2)	-0.0049 (7)	0.0539 (11)	
H14	-0.2539	0.6961	-0.1346	0.065*	
C15	-0.2822 (3)	0.6576 (2)	0.1372 (8)	0.0518 (11)	
C16	-0.1457 (3)	0.6367 (2)	0.3742 (7)	0.0495 (11)	
H16	-0.1190	0.6208	0.5044	0.059*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0386 (7)	0.1346 (13)	0.1228 (14)	0.0014 (7)	0.0000 (7)	0.0343 (10)
N1	0.055 (2)	0.042 (2)	0.042 (2)	0.0066 (15)	0.0090 (17)	-0.0048 (16)
N2	0.0401 (17)	0.0310 (17)	0.0390 (18)	0.0055 (12)	0.0071 (14)	-0.0050 (14)
N3	0.0452 (19)	0.0319 (17)	0.052 (2)	0.0061 (13)	-0.0022 (15)	-0.0140 (16)
N4	0.039 (2)	0.056 (2)	0.078 (3)	-0.0026 (15)	0.0113 (18)	0.014 (2)
01	0.081 (2)	0.070 (2)	0.048 (2)	0.0147 (15)	0.0004 (16)	-0.0235 (16)
O2	0.0499 (19)	0.071 (2)	0.059 (2)	0.0059 (14)	0.0197 (14)	-0.0108 (15)
03	0.0569 (18)	0.0363 (16)	0.064 (2)	0.0123 (12)	0.0222 (14)	0.0068 (13)
C1	0.034 (2)	0.032 (2)	0.047 (2)	-0.0027 (15)	0.0071 (16)	-0.0003 (18)
C2	0.067 (3)	0.042 (2)	0.049 (3)	0.0120 (19)	0.002 (2)	-0.012 (2)
C3	0.057 (3)	0.046 (2)	0.062 (3)	0.0052 (18)	-0.007 (2)	-0.017 (2)
C4	0.042 (2)	0.041 (2)	0.033 (2)	0.0023 (16)	0.0033 (16)	-0.0090 (17)
C5	0.050 (2)	0.041 (2)	0.040 (2)	0.0053 (17)	-0.0041 (18)	-0.0069 (18)
C6	0.044 (2)	0.045 (2)	0.046 (3)	0.0069 (17)	0.0016 (18)	0.0036 (19)
C7	0.045 (2)	0.026 (2)	0.047 (2)	0.0073 (15)	0.0114 (18)	0.0043 (17)
C8	0.044 (2)	0.046 (2)	0.055 (3)	0.0071 (17)	0.0116 (19)	0.005 (2)
С9	0.050 (2)	0.037 (2)	0.069 (3)	0.0002 (17)	0.012 (2)	0.014 (2)
C10	0.043 (2)	0.043 (2)	0.080 (3)	-0.0032 (17)	-0.003 (2)	-0.007 (2)
C11	0.043 (2)	0.033 (2)	0.046 (2)	-0.0023 (15)	0.0127 (17)	-0.0021 (17)
C12	0.041 (2)	0.0219 (18)	0.041 (2)	-0.0019 (14)	0.0067 (17)	0.0027 (16)
C13	0.045 (2)	0.040 (2)	0.050 (3)	0.0013 (16)	0.0093 (18)	0.0104 (19)
C14	0.050 (3)	0.057 (3)	0.053 (3)	0.002 (2)	0.001 (2)	0.018 (2)
C15	0.043 (2)	0.043 (2)	0.069 (3)	0.0056 (17)	0.007 (2)	0.013 (2)
C16	0.046 (2)	0.047 (2)	0.056 (3)	-0.0001 (17)	0.005 (2)	0.008 (2)

Geometric parameters (Å, °)

Cl1—C15	1.729 (4)	С5—Н5	0.9800
N101	1.254 (4)	C6—C7	1.529 (5)
N1	1.258 (4)	C6—H6A	0.9700
N1—C4	1.386 (5)	С6—Н6В	0.9700

N2—C1	1.363 (5)	C7—C8	1.515 (5)
N2—C2	1.456 (5)	C8—C9	1.523 (5)
N2—C7	1.480 (4)	C8—H8A	0.9700
N3—C1	1.357 (4)	C8—H8B	0.9700
N3—C3	1.472 (5)	C9—C10	1.515 (6)
N3—C11	1 475 (4)	C9—H9A	0.9700
N4—C15	1 320 (6)	C9—H9B	0.9700
N4—C16	1.320(0) 1 337(5)	C10—H10A	0.9700
03-C7	1.557(5) 1 407 (4)	C10 H10R	0.9700
O3—H3	0.8200	C11 - C12	1 490 (5)
$C_1 = C_4$	1.301(5)	C11_H11A	0.0700
$C_1 - C_4$	1.591 (5)		0.9700
$C_2 = C_3$	1.518 (5)	CI2_CI(0.9700
C2—H2A	0.9700	C12-C10	1.387(5)
C2—H2B	0.9700	C12-C13	1.387 (5)
C3—H3A	0.9700		1.380 (5)
С3—Н3В	0.9700	С13—Н13	0.9300
C4—C5	1.495 (5)	C14—C15	1.364 (6)
C5—C10	1.527 (6)	C14—H14	0.9300
C5—C6	1.537 (5)	C16—H16	0.9300
01—N1—O2	119.6 (3)	N2—C7—C8	110.8 (3)
O1—N1—C4	118.7 (3)	O3—C7—C6	113.1 (3)
O2—N1—C4	121.6 (3)	N2—C7—C6	107.2 (3)
C1—N2—C2	110.4 (3)	C8—C7—C6	110.5 (3)
C1—N2—C7	123.4 (3)	C7—C8—C9	111.2 (3)
C2—N2—C7	121.0 (3)	C7—C8—H8A	109.4
C1—N3—C3	108.5 (3)	C9—C8—H8A	109.4
C1—N3—C11	120.6 (3)	C7—C8—H8B	109.4
C3—N3—C11	115.0 (3)	C9—C8—H8B	109.4
C15—N4—C16	117.1 (4)	H8A—C8—H8B	108.0
С7—О3—Н3	109.5	C10—C9—C8	112.4 (3)
N3—C1—N2	110.0 (3)	С10—С9—Н9А	109.1
N3—C1—C4	129.9 (3)	С8—С9—Н9А	109.1
N2—C1—C4	120.0 (3)	C10—C9—H9B	109.1
N2-C2-C3	101.0(3)	C8—C9—H9B	109.1
N2-C2-H2A	111.6	H9A—C9—H9B	107.9
$C_3 - C_2 - H_2 A$	111.6	C9-C10-C5	112.6 (3)
N2 - C2 - H2B	111.6	C9-C10-H10A	109.1
$C_2 = C_2 = H_2 B$	111.6	C_{2}	109.1
$H_{2A} = C_2 = H_{2B}$	100 /	C_{9} C_{10} H_{10R}	109.1
$\frac{112}{112} = \frac{12}{112} = \frac{112}{112} = \frac$	109.4	C5 C10 H10B	109.1
$N_{3} = C_{3} = C_{2}$	104.0 (5)	C_{3} C_{10} H_{10D}	109.1
N_{3} C_{2} C_{2} U_{2} V_{3}	110.9	$\frac{110}{10} = \frac{11}{10} = \frac{11}{10}$	107.0
$C_2 = C_3 = H_3 A$	110.9	$N_{2} = C_{11} = U_{11}$	111.4 (5)
$NJ - UJ - \Pi JD$	110.9	110 - 011 - 011A	109.4
	110.9	U12 - U11 - H11A	109.4
$H_{3}A - C_{3} - H_{3}B$	109.0	N3-CII-HIIB	109.4
NI-C4-CI	121.8 (3)	C12—C11—H11B	109.4
NI-C4-C5	119.4 (3)	H11A—C11—H11B	108.0

C1—C4—C5	118.7 (3)	C16—C12—C13	116.4 (3)
C4—C5—C10	112.7 (3)	C16—C12—C11	122.2 (3)
C4—C5—C6	107.8 (3)	C13—C12—C11	121.4 (3)
C10—C5—C6	110.2 (4)	C14—C13—C12	120.4 (4)
C4—C5—H5	108.7	C14—C13—H13	119.8
С10—С5—Н5	108.7	C12—C13—H13	119.8
С6—С5—Н5	108.7	C15—C14—C13	117.7 (4)
C7—C6—C5	107.8 (3)	C15—C14—H14	121.2
С7—С6—Н6А	110.2	C13—C14—H14	121.2
С5—С6—Н6А	110.2	N4—C15—C14	124.4 (4)
С7—С6—Н6В	110.2	N4—C15—C11	115.8 (3)
C5—C6—H6B	110.2	C14—C15—Cl1	119.8 (3)
H6A - C6 - H6B	108.5	N4-C16-C12	1240(4)
03-C7-N2	108.0(3)	N4-C16-H16	118.0
03 - C7 - C8	107.2(3)	C_{12} C_{16} H_{16}	118.0
05-07-08	107.2 (3)	012-010-1110	110.0
C3—N3—C1—N2	3.5 (4)	C1—N2—C7—C8	-87.0 (4)
C11—N3—C1—N2	-132.3 (3)	C2—N2—C7—C8	65.2 (4)
C3—N3—C1—C4	-177.8(4)	C1—N2—C7—C6	33.7 (4)
C11—N3—C1—C4	46.5 (6)	C2—N2—C7—C6	-174.1(3)
C2—N2—C1—N3	13.0 (4)	C5—C6—C7—O3	-177.5(3)
C7—N2—C1—N3	167.8 (3)	C5—C6—C7—N2	-58.5 (4)
C2—N2—C1—C4	-165.9 (3)	C5—C6—C7—C8	62.4 (4)
C7—N2—C1—C4	-11.1 (5)	O3—C7—C8—C9	178.1 (3)
C1—N2—C2—C3	-22.7 (4)	N2—C7—C8—C9	60.5 (4)
C7—N2—C2—C3	-178.2(3)	C6—C7—C8—C9	-58.3 (4)
C1—N3—C3—C2	-17.4 (4)	C7—C8—C9—C10	51.5 (4)
C11—N3—C3—C2	121.1 (3)	C8—C9—C10—C5	-50.4 (5)
N2—C2—C3—N3	23.3 (4)	C4—C5—C10—C9	-65.2 (4)
O1—N1—C4—C1	-177.1 (3)	C6—C5—C10—C9	55.2 (4)
O2—N1—C4—C1	5.0 (5)	C1—N3—C11—C12	-162.0(3)
O1—N1—C4—C5	7.4 (5)	C3—N3—C11—C12	64.9 (4)
O2—N1—C4—C5	-170.6 (3)	N3-C11-C12-C16	58.0 (4)
N3—C1—C4—N1	20.4 (6)	N3—C11—C12—C13	-121.5 (4)
N2—C1—C4—N1	-160.9(3)	C16—C12—C13—C14	2.0 (5)
N3—C1—C4—C5	-164.0(4)	C11—C12—C13—C14	-178.5(3)
N2—C1—C4—C5	14.7 (5)	C12—C13—C14—C15	-0.8 (6)
N1—C4—C5—C10	-103.5 (4)	C16—N4—C15—C14	1.5 (6)
C1-C4-C5-C10	80.8 (4)	C16—N4—C15—Cl1	-178.9(3)
N1-C4-C5-C6	134.7 (4)	C13—C14—C15—N4	-1.1 (7)
C1—C4—C5—C6	-41.0 (5)	C13—C14—C15—Cl1	179.3 (3)
C4—C5—C6—C7	63.1 (4)	C15—N4—C16—C12	0.0 (6)
C10—C5—C6—C7	-60.2 (4)	C13—C12—C16—N4	-1.7 (5)
C1—N2—C7—O3	155.9 (3)	C11—C12—C16—N4	178.8 (3)
C2—N2—C7—O3	-51.9 (4)		~ /

D—H···A	<i>D</i> —Н	Н…А	D···· A	D—H··· A
O3—H3…N4 ⁱ	0.82	2.04	2.855 (4)	174
С11—Н11А…О1іі	0.97	2.53	3.467 (5)	161
С13—Н13…О2 ^{іі}	0.93	2.48	3.265 (5)	142

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1.