organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carbamoyl(diaminomethylidene)azanium 3-nitro-5-oxo-4,5-dihydro-1*H*-1,2,4-triazol-4-ide

Xin-Ping Huang,^a Bo-Zhou Wang,^a Dong-Ping Li^b and Seik Weng Ng^{c,d}*

^aXi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China, ^bDepartment of Mathematics, Jining Teachers College, Wulanchabu 012000, People's Republic of China, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 7 May 2013; accepted 5 June 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (N–C) = 0.003 Å; R factor = 0.044; wR factor = 0.116; data-to-parameter ratio = 11.5.

In the anion of the title salt, $C_2H_7N_4O^+ \cdot C_2HN_4O_3^-$, the negative charge resides formally on the N³ atom of the triazole ring. In the crystal, the N³ and exocyclic O atoms are hydrogen-bond acceptors with respect to the formally double-bond iminium and amido N atoms of the cation. The cation and anion are almost planar (r.m.s. deviations = 0.012 and 0.051 Å, respectively), but they are slightly bent with respect to each other [dihedral angle = 12.6 (1)°]. In the crystal, adjacent anions and cations are linked by extensive N-H···N and N-H···O hydrogen bonds, generating a ribbon running along the *b*-axis direction.

Related literature

For background to applications of similar compounds as propellants and explosives, see: Liu *et al.* (2006); Östmark *et al.* (2002).

Experimental

Crystal data C₂H₇N₄O⁺·C₂HN₄O₃⁻

 $M_r = 232.18$

Monoclinic, $P_{1_{0}}/n$ a = 3.7100 (5) Å b = 13.4195 (19) Å c = 18.033 (3) Å $\beta = 94.143$ (3)° V = 895.5 (2) Å ³	Z = 4 Mo K\alpha radiation $\mu = 0.15 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART APEX diffractometer 5217 measured reflections	2032 independent reflections 1297 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.00 2032 reflections	177 parameters All H-atom parameters refined $\Delta \rho_{\text{max}} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O4^i$	0.87 (2)	1.97 (2)	2.819 (2)	166 (2)
$N5-H2 \cdot \cdot \cdot N3$	0.94(2)	1.99 (3)	2.926 (3)	173 (2)
N5-H3···O1 ⁱⁱ	0.90 (3)	2.13 (3)	3.005 (2)	164 (2)
$N6-H4 \cdot \cdot \cdot O1$	0.89 (2)	1.96 (2)	2.824 (2)	163 (2)
N8-H5···O1	0.95 (3)	2.15 (3)	2.966 (3)	142 (2)
N8-H6···O3 ⁱⁱⁱ	0.87(2)	2.32 (3)	3.183 (3)	173 (2)
$N7 - H7 \cdot \cdot \cdot N2^{iii}$	0.90(2)	2.03 (3)	2.913 (2)	166 (2)
$N7 - H8 \cdot \cdot \cdot O4$	0.85 (2)	2.02 (2)	2.645 (2)	129 (2)
Symmetry codes: $x - \frac{3}{2}, -y + \frac{3}{2}, z - \frac{1}{2}.$	(i) $-x + \frac{1}{2}, y$	$y + \frac{1}{2}, -z + \frac{3}{2};$	(ii) $-x + \frac{1}{2}, y - \frac{1}{2}$	$z_{1}, -z + \frac{3}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Scientific Research Project of Higher Education of Inner Mongolia (No. NJZY13284 and No. NJZC13283), the Inner Mongolia Science & Technology Plan and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR-MOHE/SC/03) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5702).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, Q., Wang, B.-Z., Zhang, Z.-Z., Zhu, Z.-H. & Lian, P. (2006). Chin. J. Explosives Propellants, 29, 29–31.
- Östmark, H., Bemm, U., Bergman, H. & Langlet, A. (2002). Thermochim. Acta, 384, 253–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o1086 [https://doi.org/10.1107/S1600536813015699]

Carbamoyl(diaminomethylidene)azanium 3-nitro-5-oxo-4,5-dihydro-1*H*-1,2,4-triazol-4-ide

Xin-Ping Huang, Bo-Zhou Wang, Dong-Ping Li and Seik Weng Ng

S1. Comment

We have reported organic compounds that do not possess carbon-bound hydrogen atoms; *N*-guanylurea dinitramide, NH₂C(NH)NHC(O)NH₂·NH(NO₂)₂ (Liu *et al.*, 2006), exemplifies such a compound that has been evaluated for use as a propellant and an insensitive-munitions explosive (Östmark *et al.*, 2002). The title salt (Scheme I, Fig. 1) features an $(NH_2)_2C(NH)C(O)NH_2$ cation that has been protonated by 3-nitro-1,2,4-triazol-5-one, which is acidic owing to the electron-withdrawing nitro group. The N³ and exocyclic O atoms are hydrogen bond acceptors with respect to the formally double-bond iminium and amido N atoms of the cation. The cation and anion are planar but they are slightly bent with respect to each other. Adjacent ion-pairs are linked by extensive N…N and N…O hydrogen bonds to generate a ribbon structure (Table 1).

S2. Experimental

3-Nitro-1,2,4-triazol-5-one (26.0 g, 0.2 mol) was suspended in water (150 ml) kept at 303–313 K. Sodium hydroxide (8.2 g, 0.2 mol) dissolved in water (50 ml) was added. Guanylurea hydrochloride (27.8 g, 0.2 mol) dissolved in water (175 ml) was aded. The mixture was warmed to 323–333 K for 1.5 h. This was then cooled to 275–278 K. The solid material was collected and recrystallized from water (yield 35.0 g, 85% yield).

S3. Refinement

Hydrogen atoms were located in a difference Fourier map, and were freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_2H_7N_4OC_2HN_4O_3$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Packing diagram.

Carbamoyl(diaminomethylidene)azanium 3-nitro-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-ide

Crystal data

$C_2H_7N_4O^+C_2HN_4O_3^-$	<i>b</i> = 13.4195 (19) Å
$M_r = 232.18$	c = 18.033 (3) Å
Monoclinic, $P2_1/n$	$\beta = 94.143 \ (3)^{\circ}$
Hall symbol: -P 2yn	V = 895.5 (2) Å ³
a = 3.7100 (5) Å	Z = 4

F(000) = 480 $D_x = 1.722 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 976 reflections $\theta = 2.3-24.8^{\circ}$

Data collection

Dura concenton	
Bruker SMART APEX	1297 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.035$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Graphite monochromator	$h = -4 \rightarrow 4$
ω scans	$k = -14 \rightarrow 17$
5217 measured reflections	$l = -22 \rightarrow 21$
2032 independent reflections	
Refinement	

 $\mu = 0.15 \text{ mm}^{-1}$ T = 293 K

Prism, yellow

 $0.30 \times 0.30 \times 0.20$ mm

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.00	All H-atom parameters refined
2032 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2]$
177 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3898 (4)	0.79686 (10)	0.74934 (8)	0.0387 (4)	
O2	0.9393 (5)	0.48678 (10)	0.86971 (9)	0.0526 (5)	
03	1.2361 (4)	0.56912 (12)	0.95758 (9)	0.0502 (5)	
O4	0.0042 (5)	0.49420 (10)	0.59852 (8)	0.0429 (4)	
N1	0.7380 (5)	0.80376 (12)	0.86167 (9)	0.0309 (4)	
N2	0.9228 (5)	0.73874 (11)	0.90892 (8)	0.0301 (4)	
N3	0.6699 (5)	0.65784 (11)	0.80734 (9)	0.0288 (4)	
N4	1.0257 (5)	0.56440 (12)	0.90216 (9)	0.0343 (4)	
N5	0.3102 (5)	0.50638 (14)	0.71153 (9)	0.0356 (5)	
N6	0.1708 (5)	0.64808 (12)	0.64482 (9)	0.0304 (4)	
N7	-0.1373 (5)	0.66445 (15)	0.52843 (10)	0.0364 (5)	
N8	0.0601 (6)	0.80164 (14)	0.59459 (12)	0.0465 (6)	
C1	0.8697 (5)	0.65588 (13)	0.87193 (10)	0.0257 (4)	
C2	0.5814 (5)	0.75613 (14)	0.80084 (10)	0.0281 (5)	
C3	0.1543 (6)	0.54422 (14)	0.64972 (10)	0.0291 (5)	
C4	0.0251 (6)	0.70408 (14)	0.58795 (10)	0.0283 (4)	
H1	0.703 (6)	0.8651 (17)	0.8753 (12)	0.042 (6)*	
H2	0.434 (6)	0.5511 (18)	0.7446 (12)	0.046 (7)*	
H3	0.290 (7)	0.440 (2)	0.7190 (14)	0.064 (8)*	
H4	0.257 (7)	0.6841 (19)	0.6834 (13)	0.053 (7)*	
Н5	0.177 (8)	0.8310 (19)	0.6379 (16)	0.076 (9)*	

supporting information

H6	-0.034 (7)	0.8406 (18)	0.5601 (13)	0.052 (7)*
H7	-0.248 (6)	0.7032 (18)	0.4929 (13)	0.051 (7)*
H8	-0.162 (6)	0.6015 (18)	0.5248 (13)	0.046 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0502 (10)	0.0337 (8)	0.0302 (8)	0.0054 (7)	-0.0120 (7)	0.0002 (6)
02	0.0776 (13)	0.0250 (8)	0.0544 (10)	0.0059 (8)	-0.0017 (9)	-0.0022 (7)
O3	0.0493 (10)	0.0527 (10)	0.0459 (10)	0.0033 (8)	-0.0145 (8)	0.0133 (8)
04	0.0670 (11)	0.0287 (8)	0.0307 (8)	-0.0121 (7)	-0.0130 (7)	0.0012 (6)
N1	0.0418 (11)	0.0222 (8)	0.0274 (9)	0.0024 (8)	-0.0054 (8)	-0.0039 (7)
N2	0.0362 (11)	0.0268 (8)	0.0262 (9)	0.0003 (7)	-0.0050 (7)	-0.0025 (7)
N3	0.0338 (10)	0.0244 (9)	0.0272 (9)	0.0000 (7)	-0.0036 (7)	-0.0030(7)
N4	0.0375 (11)	0.0305 (9)	0.0348 (10)	0.0012 (8)	0.0027 (8)	0.0045 (8)
N5	0.0521 (12)	0.0251 (9)	0.0276 (10)	-0.0028 (9)	-0.0099 (9)	0.0016 (8)
N6	0.0434 (11)	0.0234 (8)	0.0231 (9)	-0.0028 (8)	-0.0071 (8)	-0.0013 (7)
N7	0.0484 (12)	0.0306 (10)	0.0283 (10)	-0.0027 (9)	-0.0103 (9)	0.0033 (8)
N8	0.0717 (16)	0.0240 (10)	0.0413 (12)	0.0037 (10)	-0.0129 (11)	0.0019 (9)
C1	0.0271 (11)	0.0260 (10)	0.0238 (10)	0.0004 (8)	0.0004 (8)	-0.0009 (8)
C2	0.0341 (12)	0.0246 (10)	0.0252 (10)	-0.0009 (8)	-0.0014 (9)	-0.0020 (8)
C3	0.0362 (12)	0.0263 (10)	0.0244 (10)	-0.0025 (9)	-0.0002 (9)	-0.0013 (8)
C4	0.0313 (11)	0.0275 (10)	0.0263 (10)	-0.0003 (9)	0.0024 (8)	0.0003 (8)

Geometric parameters (Å, °)

01—C2	1.253 (2)	N5—H2	0.94 (2)
O2—N4	1.226 (2)	N5—H3	0.90 (3)
O3—N4	1.224 (2)	N6—C4	1.352 (2)
O4—C3	1.240 (2)	N6—C3	1.398 (2)
N1—C2	1.363 (2)	N6—H4	0.89 (2)
N1—N2	1.369 (2)	N7—C4	1.306 (3)
N1—H1	0.87 (2)	N7—H7	0.90 (2)
N2-C1	1.304 (2)	N7—H8	0.85 (2)
N3—C1	1.335 (2)	N8—C4	1.320 (3)
N3—C2	1.362 (2)	N8—H5	0.95 (3)
N4—C1	1.447 (2)	N8—H6	0.87 (2)
N5—C3	1.320 (2)		
C2—N1—N2	111.56 (15)	H7—N7—H8	119 (2)
C2—N1—H1	127.4 (15)	C4—N8—H5	121.4 (16)
N2—N1—H1	120.3 (15)	C4—N8—H6	120.0 (16)
C1—N2—N1	100.07 (14)	H5—N8—H6	118 (2)
C1—N3—C2	102.08 (15)	N2-C1-N3	118.90 (16)
O3—N4—O2	124.25 (18)	N2—C1—N4	119.28 (17)
O3—N4—C1	118.53 (17)	N3—C1—N4	121.82 (16)
O2—N4—C1	117.21 (17)	O1—C2—N3	127.31 (18)
C3—N5—H2	117.0 (14)	O1—C2—N1	125.30 (18)

C3—N5—H3	118.0 (17)	N3—C2—N1	107.39 (16)
H2—N5—H3	125 (2)	O4—C3—N5	124.49 (19)
C4—N6—C3	125.80 (17)	O4—C3—N6	120.77 (18)
C4—N6—H4	113.2 (16)	N5—C3—N6	114.74 (18)
C3—N6—H4	120.6 (16)	N7—C4—N8	121.0 (2)
C4—N7—H7	120.5 (15)	N7—C4—N6	122.19 (18)
C4—N7—H8	120.5 (16)	N8—C4—N6	116.81 (19)
C2—N1—N2—C1 N1—N2—C1—N3 N1—N2—C1—N4 C2—N3—C1—N4 O3—N4—C1—N2 O2—N4—C1—N2 O3—N4—C1—N3 O2—N4—C1—N3	1.2 (2) -1.0 (2) 179.47 (16) 0.4 (2) 179.90 (17) -7.9 (3) 172.69 (18) 172.61 (18) -6.8 (3)	C1—N3—C2—O1 C1—N3—C2—N1 N2—N1—C2—O1 N2—N1—C2—N3 C4—N6—C3—O4 C4—N6—C3—N5 C3—N6—C4—N7 C3—N6—C4—N8	-179.1 (2) 0.4 (2) 178.41 (19) -1.1 (2) 1.9 (3) -178.53 (19) -3.2 (3) 178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A	
N1—H1····O4 ⁱ	0.87 (2)	1.97 (2)	2.819 (2)	166 (2)	
N5—H2…N3	0.94 (2)	1.99 (3)	2.926 (3)	173 (2)	
N5—H3…O1 ⁱⁱ	0.90 (3)	2.13 (3)	3.005 (2)	164 (2)	
N6—H4…O1	0.89(2)	1.96 (2)	2.824 (2)	163 (2)	
N8—H5…O1	0.95 (3)	2.15 (3)	2.966 (3)	142 (2)	
N8—H6····O3 ⁱⁱⁱ	0.87 (2)	2.32 (3)	3.183 (3)	173 (2)	
N7—H7···N2 ⁱⁱⁱ	0.90 (2)	2.03 (3)	2.913 (2)	166 (2)	
N7—H8…O4	0.85 (2)	2.02 (2)	2.645 (2)	129 (2)	

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) -x+1/2, y-1/2, -z+3/2; (iii) x-3/2, -y+3/2, z-1/2.