metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(5,10,15,20-tetra­phenyl­porphyrin­ato-κ4N)cadmium(II)–18-crown-6 (1/1)

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, and bLaboratoire de Chimie de Coordination CNRS UPR 8241, 205 Route de Norbone, 31077, Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 19 May 2013; accepted 30 May 2013; online 8 June 2013)

The title compound, [Cd(C44H28N4)(H2O)]·(C12H24O6), was made by the reaction of the [Cd(TPP)] with an excess of 18-crown-6 in chloro­benzene (where TPP is tetra­phenyl­porphyrinate). The CdII cation is chelated by a TPP anion and coordinated by a water mol­ecule in a distorted N4O square-pyramidal geometry, the CdII cation being displaced by 0.7533 (9) Å from the mean plane of four N atoms of TPP anion. The porphyrin core presents a significant distortion, the maximum atomic deviation from the 24-atom mean plane is 0.1517 (2) Å. The 18-crown-6 mol­ecule is linked with the CdII complex via classical O—H⋯O hydrogen bonds. In the crystal, weak C—H⋯π inter­actions link the complex and 18-crown-6 mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For the synthesis, see: Rodesiler et al. (1985b[Rodesiler, P. F., Griffith, E. A. H., Charles, N. G., Lebioda, L. & Amma, E. L. (1985b). Inorg. Chem. 24, 4595-4600.]). For related structures, see: Byrn et al. (1991[Byrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549-6557.]); Ezzayani et al. (2013[Ezzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114-m115.]); Rodesiler et al. (1985a[Rodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985a). Acta Cryst. C41, 673-678.]); Mansour et al. (2010[Mansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509-m510.]); Yang et al. (2003[Yang, F.-A., Chen, J.-H., Hsieh, H.-Y., Elango, S. & Hwang, L.-P. (2003). Inorg. Chem. 42, 4603-4609.]); Maldonado et al. (2009[Maldonado, C. R., Quiros, M. & Salas, J. M. (2009). Polyhedron, 28, 911-916.]). For bond lengths in CdII complexes, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For further details of geometric distortions in related compounds, see: Scheidt & Lee (1987[Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1-7.]); Jentzen et al. (1997[Jentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C44H28N4)(H2O)]·C12H24O6

  • Mr = 1007.42

  • Monoclinic, P 21 /n

  • a = 17.1956 (2) Å

  • b = 17.0918 (2) Å

  • c = 17.3903 (2) Å

  • β = 106.416 (1)°

  • V = 4902.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 173 K

  • 0.48 × 0.40 × 0.30 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.959, Tmax = 1.000

  • 53048 measured reflections

  • 10009 independent reflections

  • 8403 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.04

  • 10009 reflections

  • 619 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cd—N1 2.2296 (15)
Cd—N2 2.2296 (15)
Cd—N3 2.2322 (16)
Cd—N4 2.2265 (15)
Cd—O1 2.2368 (18)

Table 2
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19 and C33–C38 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O4 1.01 (2) 2.06 (2) 3.057 (2) 176
O1—H2O1⋯O6 1.00 (2) 2.04 (2) 3.013 (2) 165
C31—H31⋯Cg3i 0.95 2.93 3.651 (2) 133
C41—H41⋯Cg11ii 0.95 2.91 3.794 (2) 154
C44—H44⋯Cg2iii 0.95 2.95 3.648 (2) 131
C47—H47ACg2 0.99 2.91 3.898 (3) 173
C54—H54BCg4 0.99 2.98 3.971 (3) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennesse, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In continuation of our research on the crystal structures of porphyrin complexes in general and the structures of metalloporphyrins resulting from the reaction of these species with the ether crown 18-crown-6 (Mansour et al., 2010; Ezzayani et al., 2013) we herein report the synthesis and crystal structure of the aqua-cadmium tetraphenylporhyrin derivative [CdII(TPP)(H2O)].(18-C-6). The coordination geometry of the Cd2+ ion is square pyramidal with four Cd—N(pyrrole) bonds in the equatorial porphyrin plane and the Cd—O bond with a water axial ligand molecule.

The axial Cd—O(H2O) bond length [2.237 (2) Å] is within the range [2.210 (2) - 2.326 (1) Å] found for several cadmium-aqua non-porphyrin complexes (CSD refcodes BUYWIB10; Rodesiler et al., 1985a and BOQQEE; Maldonado et al., 2009) (CDS, version 5.34, Allen, 2002).

The average equatorial cadmium-pyrrole N atoms distance (Cd—Np) [2.230 (2) Å] is in the range [2.126 (9) - 2.3167 (3) Å] for Cd(II) porphyrin complexes (CSD refcodes JIVROV; Byrn et al., 1991 and EXACOV; Yang et al., 2003).

The cadmium atom is displaced by 0.8025 (4) Å from the 24 atoms mean plane. The porphyrin core presents a major doming deformation as seen by the positions of the N atoms above the CdN4C20 mean plane (Fig.1) ((Scheidt & Lee, 1987). This is confirmed by the Normal Structural Decomposition (NSD) calculations (Jentzen et al., 1997) with a doming percentage of 47%. These calculations indicated also a saddling and ruffling distortions of the porphyrin core (~ 27% and ~ 14% respectively).

The crystal packing in the a and b directions assemble to a linear chains linked together by weak C—H···π interactions incorporating pyrrole or phenyl rings (Table 1). The parallel chains are sustained together by weak intermolecular hydrogen bonds between the O1 oxygen of the water axial ligand and the oxygene atoms of the 18-crown-6 ether crown molecule (Fig.2).

Related literature top

For the synthesis, see: Rodesiler et al. (1985b). For related structures, see: Byrn et al. (1991); Ezzayani et al. (2013); Rodesiler et al. (1985a); Mansour et al. (2010); Yang et al. (2003); Maldonado et al. (2009). For bond lengths in CdII complexes, see: Allen (2002). For further details of geometric distortions in related compounds, see: Scheidt & Lee (1987); Jentzen et al. (1997).

Experimental top

To a solution of [Cd(TPP)] (Rodesiler et al. 1985b) (20 mg, 0.027 mmol) in chlorobenzene (15 ml) was added an excess of 18-crown-6 (80 mg, 0.300 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution gradually changes from dark green to blue – purple. The resulting material was crystallized by diffusion of hexanes through the chlorobenzene solution which yields [Cd(TPP)(H2O)].(18-C-6). The water molecule coordinated to the cadmium come from the hygroscopic 18-crown-6 reagent used in excess.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic, methylene). The two H atoms of the water axial ligand were found in the difference Fourier map and were included in the refinement with Uiso(H) = 1.2Ueq(O).

Structure description top

In continuation of our research on the crystal structures of porphyrin complexes in general and the structures of metalloporphyrins resulting from the reaction of these species with the ether crown 18-crown-6 (Mansour et al., 2010; Ezzayani et al., 2013) we herein report the synthesis and crystal structure of the aqua-cadmium tetraphenylporhyrin derivative [CdII(TPP)(H2O)].(18-C-6). The coordination geometry of the Cd2+ ion is square pyramidal with four Cd—N(pyrrole) bonds in the equatorial porphyrin plane and the Cd—O bond with a water axial ligand molecule.

The axial Cd—O(H2O) bond length [2.237 (2) Å] is within the range [2.210 (2) - 2.326 (1) Å] found for several cadmium-aqua non-porphyrin complexes (CSD refcodes BUYWIB10; Rodesiler et al., 1985a and BOQQEE; Maldonado et al., 2009) (CDS, version 5.34, Allen, 2002).

The average equatorial cadmium-pyrrole N atoms distance (Cd—Np) [2.230 (2) Å] is in the range [2.126 (9) - 2.3167 (3) Å] for Cd(II) porphyrin complexes (CSD refcodes JIVROV; Byrn et al., 1991 and EXACOV; Yang et al., 2003).

The cadmium atom is displaced by 0.8025 (4) Å from the 24 atoms mean plane. The porphyrin core presents a major doming deformation as seen by the positions of the N atoms above the CdN4C20 mean plane (Fig.1) ((Scheidt & Lee, 1987). This is confirmed by the Normal Structural Decomposition (NSD) calculations (Jentzen et al., 1997) with a doming percentage of 47%. These calculations indicated also a saddling and ruffling distortions of the porphyrin core (~ 27% and ~ 14% respectively).

The crystal packing in the a and b directions assemble to a linear chains linked together by weak C—H···π interactions incorporating pyrrole or phenyl rings (Table 1). The parallel chains are sustained together by weak intermolecular hydrogen bonds between the O1 oxygen of the water axial ligand and the oxygene atoms of the 18-crown-6 ether crown molecule (Fig.2).

For the synthesis, see: Rodesiler et al. (1985b). For related structures, see: Byrn et al. (1991); Ezzayani et al. (2013); Rodesiler et al. (1985a); Mansour et al. (2010); Yang et al. (2003); Maldonado et al. (2009). For bond lengths in CdII complexes, see: Allen (2002). For further details of geometric distortions in related compounds, see: Scheidt & Lee (1987); Jentzen et al. (1997).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 45%. Except the two H atoms of the water axial ligand, the other H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Drawing showing the packing in lattice of [CdII(TPP)(H2O)].(18-C-6), viewed down the b axis.
Aqua(5,10,15,20-tetraphenylporphyrinato-κ4N)cadmium–18-crown-6 (1/1) top
Crystal data top
[Cd(C44H28N4)(H2O)]·C12H24O6F(000) = 2088
Mr = 1007.42Dx = 1.365 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20195 reflections
a = 17.1956 (2) Åθ = 3.0–30.2°
b = 17.0918 (2) ŵ = 0.50 mm1
c = 17.3903 (2) ÅT = 173 K
β = 106.416 (1)°Prism, dark purple
V = 4902.72 (10) Å30.48 × 0.40 × 0.30 mm
Z = 4
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
10009 independent reflections
Radiation source: Enhance (Mo) X-ray Source8403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2121
Tmin = 0.959, Tmax = 1.000l = 2021
53048 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0294P)2 + 3.9972P]
where P = (Fo2 + 2Fc2)/3
10009 reflections(Δ/σ)max = 0.001
619 parametersΔρmax = 0.64 e Å3
2 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd(C44H28N4)(H2O)]·C12H24O6V = 4902.72 (10) Å3
Mr = 1007.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.1956 (2) ŵ = 0.50 mm1
b = 17.0918 (2) ÅT = 173 K
c = 17.3903 (2) Å0.48 × 0.40 × 0.30 mm
β = 106.416 (1)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
10009 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
8403 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 1.000Rint = 0.027
53048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.64 e Å3
10009 reflectionsΔρmin = 0.53 e Å3
619 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.265537 (8)0.245868 (8)0.053198 (8)0.02100 (5)
N10.37977 (9)0.17811 (9)0.10136 (9)0.0212 (3)
N20.21008 (9)0.14476 (9)0.09930 (9)0.0214 (3)
N30.17605 (9)0.31526 (9)0.09616 (10)0.0231 (3)
N40.34586 (9)0.34841 (9)0.09638 (9)0.0220 (3)
O10.21234 (11)0.24774 (10)0.07997 (11)0.0422 (4)
O20.33082 (9)0.14168 (9)0.11786 (9)0.0364 (4)
O30.16534 (9)0.08322 (9)0.15578 (9)0.0352 (3)
O40.03786 (9)0.18817 (9)0.13841 (9)0.0361 (4)
O50.06271 (10)0.34754 (9)0.17462 (9)0.0371 (4)
O60.22338 (10)0.41108 (10)0.14125 (10)0.0444 (4)
O70.34991 (9)0.30153 (9)0.15312 (8)0.0322 (3)
C10.45563 (11)0.20529 (11)0.10492 (11)0.0211 (4)
C20.50969 (12)0.13908 (11)0.11073 (12)0.0271 (4)
H20.56550.14120.11310.033*
C30.46583 (12)0.07371 (12)0.11217 (12)0.0271 (4)
H30.48530.02140.11640.033*
C40.38352 (11)0.09828 (11)0.10614 (11)0.0216 (4)
C50.31917 (11)0.04744 (11)0.10855 (11)0.0218 (4)
C60.23883 (11)0.06961 (11)0.10652 (11)0.0213 (4)
C70.17416 (12)0.01738 (11)0.11131 (12)0.0248 (4)
H70.17750.03790.11640.030*
C80.10785 (12)0.06195 (11)0.10721 (12)0.0248 (4)
H80.05620.04370.10890.030*
C90.13056 (11)0.14254 (11)0.09982 (11)0.0216 (4)
C100.07981 (11)0.20806 (11)0.09666 (11)0.0222 (4)
C110.10115 (11)0.28804 (11)0.09593 (11)0.0225 (4)
C120.04866 (12)0.35440 (12)0.09641 (12)0.0269 (4)
H120.00660.35220.09610.032*
C130.09299 (12)0.41978 (12)0.09745 (12)0.0267 (4)
H130.07480.47220.09820.032*
C140.17375 (11)0.39514 (11)0.09725 (11)0.0225 (4)
C150.23970 (11)0.44530 (11)0.10023 (11)0.0225 (4)
C160.31955 (11)0.42321 (11)0.10184 (11)0.0225 (4)
C170.38757 (12)0.47598 (12)0.11154 (12)0.0277 (4)
H170.38620.53130.11620.033*
C180.45337 (12)0.43202 (11)0.11275 (12)0.0266 (4)
H180.50680.45070.11870.032*
C190.42720 (11)0.35104 (11)0.10322 (11)0.0223 (4)
C200.47778 (11)0.28538 (11)0.10535 (11)0.0209 (4)
C210.56510 (11)0.30243 (11)0.11270 (11)0.0222 (4)
C220.58749 (12)0.34409 (12)0.05328 (12)0.0279 (4)
H220.54680.36180.00740.034*
C230.66821 (13)0.35997 (12)0.06010 (13)0.0317 (5)
H230.68250.38850.01920.038*
C240.72800 (12)0.33410 (12)0.12661 (14)0.0324 (5)
H240.78340.34420.13110.039*
C250.70675 (12)0.29358 (13)0.18647 (13)0.0313 (5)
H250.74770.27630.23230.038*
C260.62602 (12)0.27795 (12)0.18002 (12)0.0258 (4)
H260.61210.25040.22170.031*
C270.33764 (11)0.03828 (11)0.11456 (12)0.0229 (4)
C280.35747 (12)0.07837 (12)0.05283 (12)0.0269 (4)
H280.36070.05040.00660.032*
C290.37260 (12)0.15827 (12)0.05755 (14)0.0322 (5)
H290.38590.18460.01480.039*
C300.36830 (13)0.19942 (12)0.12482 (15)0.0353 (5)
H300.37770.25430.12790.042*
C310.35036 (14)0.16063 (13)0.18735 (14)0.0376 (5)
H310.34840.18870.23390.045*
C320.33515 (13)0.08089 (12)0.18251 (13)0.0319 (5)
H320.32290.05480.22590.038*
C330.00569 (11)0.19123 (11)0.09717 (11)0.0220 (4)
C340.06227 (12)0.16238 (12)0.02939 (12)0.0267 (4)
H340.04620.15140.01750.032*
C350.14237 (12)0.14941 (12)0.02941 (13)0.0298 (4)
H350.18050.12960.01730.036*
C360.16622 (12)0.16522 (11)0.09690 (13)0.0294 (4)
H360.22110.15760.09650.035*
C370.11035 (13)0.19221 (14)0.16515 (14)0.0359 (5)
H370.12640.20160.21230.043*
C380.03095 (13)0.20565 (14)0.16522 (13)0.0333 (5)
H380.00690.22500.21230.040*
C390.22450 (11)0.53120 (11)0.10536 (12)0.0227 (4)
C400.18189 (12)0.57321 (12)0.03822 (13)0.0290 (4)
H400.16090.54700.01150.035*
C410.16974 (13)0.65313 (12)0.04310 (14)0.0327 (5)
H410.14090.68120.00340.039*
C420.19919 (13)0.69193 (12)0.11491 (14)0.0322 (5)
H420.19100.74670.11800.039*
C430.24083 (15)0.65080 (13)0.18261 (14)0.0385 (5)
H430.26060.67710.23240.046*
C440.25354 (14)0.57107 (13)0.17745 (13)0.0348 (5)
H440.28260.54320.22400.042*
C450.30525 (15)0.06615 (13)0.14746 (15)0.0386 (5)
H45A0.35080.02880.12980.046*
H45B0.28780.06690.20680.046*
C460.23605 (15)0.04059 (13)0.11659 (14)0.0386 (5)
H46A0.22610.01610.12650.046*
H46B0.24990.04970.05810.046*
C470.09835 (15)0.06200 (14)0.12725 (15)0.0410 (6)
H47A0.11210.07050.06860.049*
H47B0.08550.00590.13810.049*
C480.02653 (15)0.11097 (14)0.16878 (15)0.0402 (5)
H48A0.02000.11150.22720.048*
H48B0.02320.08840.15980.048*
C490.02503 (14)0.23930 (14)0.18003 (15)0.0381 (5)
H49A0.07700.22310.17110.046*
H49B0.03090.23690.23830.046*
C500.00474 (15)0.32122 (15)0.15018 (16)0.0432 (6)
H50A0.05180.35600.17240.052*
H50B0.00840.32240.09100.052*
C510.08384 (17)0.42528 (14)0.15134 (18)0.0485 (6)
H51A0.10020.42920.09210.058*
H51B0.03650.45990.17270.058*
C520.15181 (17)0.45058 (15)0.18254 (17)0.0482 (6)
H52A0.13870.43890.24060.058*
H52B0.15990.50780.17530.058*
C530.29070 (16)0.42850 (14)0.17172 (16)0.0449 (6)
H53A0.30410.48490.16460.054*
H53B0.27640.41630.22970.054*
C540.36231 (15)0.38056 (14)0.12745 (15)0.0416 (6)
H54A0.41210.40110.13810.050*
H54B0.36920.38380.06910.050*
C550.41553 (14)0.25217 (14)0.11332 (14)0.0374 (5)
H55A0.42340.25420.05470.045*
H55B0.46600.27040.12420.045*
C560.39737 (13)0.16979 (14)0.14272 (14)0.0381 (5)
H56A0.38410.16850.20190.046*
H56B0.44540.13620.12050.046*
H1O10.1543 (7)0.2301 (14)0.0972 (15)0.046*
H2O10.2057 (15)0.3017 (8)0.1024 (14)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01691 (8)0.02131 (8)0.02469 (8)0.00051 (5)0.00575 (5)0.00129 (5)
N10.0182 (8)0.0208 (8)0.0237 (8)0.0008 (6)0.0044 (6)0.0015 (6)
N20.0179 (8)0.0212 (8)0.0252 (8)0.0014 (6)0.0064 (6)0.0007 (6)
N30.0193 (8)0.0214 (8)0.0298 (9)0.0019 (6)0.0089 (7)0.0019 (7)
N40.0184 (8)0.0210 (8)0.0257 (8)0.0005 (6)0.0048 (6)0.0010 (6)
O10.0450 (10)0.0423 (10)0.0376 (9)0.0045 (8)0.0090 (8)0.0027 (7)
O20.0369 (9)0.0359 (8)0.0366 (9)0.0010 (7)0.0110 (7)0.0037 (7)
O30.0394 (9)0.0319 (8)0.0336 (8)0.0028 (7)0.0090 (7)0.0072 (6)
O40.0375 (9)0.0368 (8)0.0325 (8)0.0023 (7)0.0077 (7)0.0000 (7)
O50.0410 (9)0.0326 (8)0.0431 (9)0.0008 (7)0.0208 (7)0.0011 (7)
O60.0474 (10)0.0411 (9)0.0446 (10)0.0062 (8)0.0126 (8)0.0076 (8)
O70.0298 (8)0.0358 (8)0.0285 (8)0.0037 (6)0.0042 (6)0.0007 (6)
C10.0182 (9)0.0256 (9)0.0189 (9)0.0012 (7)0.0040 (7)0.0002 (7)
C20.0192 (10)0.0261 (10)0.0352 (11)0.0016 (8)0.0064 (8)0.0005 (8)
C30.0211 (10)0.0243 (10)0.0342 (11)0.0051 (8)0.0050 (8)0.0009 (8)
C40.0201 (9)0.0217 (9)0.0217 (9)0.0019 (7)0.0040 (7)0.0017 (7)
C50.0214 (9)0.0224 (9)0.0203 (9)0.0005 (7)0.0037 (7)0.0011 (7)
C60.0223 (9)0.0223 (9)0.0190 (9)0.0008 (7)0.0056 (7)0.0003 (7)
C70.0254 (10)0.0210 (9)0.0280 (10)0.0030 (8)0.0076 (8)0.0011 (8)
C80.0225 (10)0.0254 (10)0.0284 (10)0.0053 (8)0.0103 (8)0.0010 (8)
C90.0202 (9)0.0238 (9)0.0213 (9)0.0018 (7)0.0068 (7)0.0004 (7)
C100.0206 (9)0.0258 (10)0.0214 (9)0.0024 (8)0.0075 (8)0.0015 (7)
C110.0197 (9)0.0250 (10)0.0233 (10)0.0019 (8)0.0069 (8)0.0017 (8)
C120.0194 (10)0.0275 (10)0.0351 (11)0.0005 (8)0.0099 (8)0.0007 (8)
C130.0240 (10)0.0229 (9)0.0349 (11)0.0022 (8)0.0107 (9)0.0014 (8)
C140.0204 (9)0.0218 (9)0.0254 (10)0.0002 (7)0.0065 (8)0.0006 (7)
C150.0217 (9)0.0223 (9)0.0233 (10)0.0013 (7)0.0058 (8)0.0005 (7)
C160.0201 (9)0.0221 (9)0.0238 (10)0.0009 (7)0.0038 (8)0.0021 (7)
C170.0249 (10)0.0213 (9)0.0360 (11)0.0030 (8)0.0073 (9)0.0028 (8)
C180.0196 (10)0.0256 (10)0.0345 (11)0.0040 (8)0.0074 (8)0.0020 (8)
C190.0187 (9)0.0247 (10)0.0219 (9)0.0017 (7)0.0032 (7)0.0019 (7)
C200.0172 (9)0.0249 (9)0.0191 (9)0.0014 (7)0.0025 (7)0.0014 (7)
C210.0170 (9)0.0231 (9)0.0261 (10)0.0010 (7)0.0051 (7)0.0011 (8)
C220.0223 (10)0.0309 (10)0.0293 (11)0.0004 (8)0.0051 (8)0.0035 (8)
C230.0278 (11)0.0306 (11)0.0394 (12)0.0032 (9)0.0139 (9)0.0041 (9)
C240.0180 (10)0.0322 (11)0.0472 (13)0.0034 (8)0.0097 (9)0.0044 (10)
C250.0195 (10)0.0349 (11)0.0357 (12)0.0010 (9)0.0014 (9)0.0008 (9)
C260.0207 (10)0.0297 (10)0.0258 (10)0.0000 (8)0.0048 (8)0.0009 (8)
C270.0166 (9)0.0223 (9)0.0275 (10)0.0002 (7)0.0023 (8)0.0021 (8)
C280.0219 (10)0.0264 (10)0.0315 (11)0.0019 (8)0.0059 (8)0.0029 (8)
C290.0247 (11)0.0272 (10)0.0441 (13)0.0032 (8)0.0088 (9)0.0032 (9)
C300.0268 (11)0.0201 (10)0.0567 (15)0.0021 (8)0.0077 (10)0.0052 (10)
C310.0378 (13)0.0307 (11)0.0427 (13)0.0030 (10)0.0086 (10)0.0135 (10)
C320.0342 (12)0.0309 (11)0.0290 (11)0.0015 (9)0.0067 (9)0.0041 (9)
C330.0202 (9)0.0186 (9)0.0284 (10)0.0013 (7)0.0089 (8)0.0001 (7)
C340.0257 (10)0.0272 (10)0.0291 (11)0.0024 (8)0.0109 (8)0.0040 (8)
C350.0232 (10)0.0270 (10)0.0368 (12)0.0047 (8)0.0046 (9)0.0053 (9)
C360.0217 (10)0.0221 (10)0.0473 (13)0.0016 (8)0.0145 (9)0.0007 (9)
C370.0322 (12)0.0450 (13)0.0370 (12)0.0047 (10)0.0206 (10)0.0057 (10)
C380.0270 (11)0.0458 (13)0.0281 (11)0.0070 (10)0.0096 (9)0.0088 (10)
C390.0184 (9)0.0210 (9)0.0306 (10)0.0020 (7)0.0102 (8)0.0004 (8)
C400.0268 (11)0.0250 (10)0.0317 (11)0.0002 (8)0.0024 (9)0.0031 (8)
C410.0263 (11)0.0257 (10)0.0428 (13)0.0032 (8)0.0046 (9)0.0055 (9)
C420.0296 (11)0.0214 (10)0.0504 (14)0.0008 (8)0.0193 (10)0.0024 (9)
C430.0529 (15)0.0298 (11)0.0347 (12)0.0065 (10)0.0154 (11)0.0078 (9)
C440.0456 (13)0.0292 (11)0.0282 (11)0.0024 (10)0.0083 (10)0.0034 (9)
C450.0467 (14)0.0291 (11)0.0405 (13)0.0064 (10)0.0131 (11)0.0001 (10)
C460.0492 (14)0.0264 (11)0.0397 (13)0.0029 (10)0.0116 (11)0.0038 (9)
C470.0470 (14)0.0343 (12)0.0437 (14)0.0072 (11)0.0161 (11)0.0073 (10)
C480.0406 (13)0.0373 (13)0.0425 (13)0.0105 (10)0.0113 (11)0.0016 (10)
C490.0294 (12)0.0475 (14)0.0398 (13)0.0004 (10)0.0136 (10)0.0032 (10)
C500.0400 (14)0.0463 (14)0.0510 (15)0.0061 (11)0.0252 (12)0.0022 (11)
C510.0558 (16)0.0314 (12)0.0638 (17)0.0038 (11)0.0256 (14)0.0040 (12)
C520.0582 (17)0.0318 (12)0.0572 (16)0.0004 (12)0.0207 (13)0.0022 (11)
C530.0519 (15)0.0332 (12)0.0506 (15)0.0068 (11)0.0163 (12)0.0047 (11)
C540.0416 (14)0.0375 (13)0.0428 (14)0.0119 (11)0.0073 (11)0.0024 (10)
C550.0256 (11)0.0472 (14)0.0342 (12)0.0020 (10)0.0001 (9)0.0015 (10)
C560.0251 (11)0.0465 (13)0.0406 (13)0.0070 (10)0.0059 (10)0.0021 (10)
Geometric parameters (Å, º) top
Cd—N12.2296 (15)C25—C261.387 (3)
Cd—N22.2296 (15)C25—H250.9500
Cd—N32.2322 (16)C26—H260.9500
Cd—N42.2265 (15)C27—C281.395 (3)
Cd—O12.2368 (18)C27—C321.399 (3)
N1—C41.367 (2)C28—C291.388 (3)
N1—C11.370 (2)C28—H280.9500
N2—C61.369 (2)C29—C301.385 (3)
N2—C91.370 (2)C29—H290.9500
N3—C141.366 (2)C30—C311.381 (3)
N3—C111.368 (2)C30—H300.9500
N4—C161.368 (2)C31—C321.386 (3)
N4—C191.371 (2)C31—H310.9500
O1—H1O11.004 (10)C32—H320.9500
O1—H2O10.996 (10)C33—C341.390 (3)
O2—C451.413 (3)C33—C381.393 (3)
O2—C561.417 (3)C34—C351.395 (3)
O3—C461.416 (3)C34—H340.9500
O3—C471.424 (3)C35—C361.375 (3)
O4—C481.414 (3)C35—H350.9500
O4—C491.419 (3)C36—C371.378 (3)
O5—C511.407 (3)C36—H360.9500
O5—C501.417 (3)C37—C381.384 (3)
O6—C521.409 (3)C37—H370.9500
O6—C531.434 (3)C38—H380.9500
O7—C541.420 (3)C39—C441.390 (3)
O7—C551.422 (3)C39—C401.390 (3)
C1—C201.420 (3)C40—C411.388 (3)
C1—C21.450 (3)C40—H400.9500
C2—C31.352 (3)C41—C421.378 (3)
C2—H20.9500C41—H410.9500
C3—C41.451 (3)C42—C431.384 (3)
C3—H30.9500C42—H420.9500
C4—C51.417 (3)C43—C441.387 (3)
C5—C61.423 (3)C43—H430.9500
C5—C271.497 (3)C44—H440.9500
C6—C71.447 (3)C45—C461.502 (3)
C7—C81.356 (3)C45—H45A0.9900
C7—H70.9500C45—H45B0.9900
C8—C91.447 (3)C46—H46A0.9900
C8—H80.9500C46—H46B0.9900
C9—C101.411 (3)C47—C481.498 (3)
C10—C111.416 (3)C47—H47A0.9900
C10—C331.500 (3)C47—H47B0.9900
C11—C121.451 (3)C48—H48A0.9900
C12—C131.350 (3)C48—H48B0.9900
C12—H120.9500C49—C501.500 (3)
C13—C141.452 (3)C49—H49A0.9900
C13—H130.9500C49—H49B0.9900
C14—C151.411 (3)C50—H50A0.9900
C15—C161.417 (3)C50—H50B0.9900
C15—C391.498 (3)C51—C521.485 (4)
C16—C171.449 (3)C51—H51A0.9900
C17—C181.353 (3)C51—H51B0.9900
C17—H170.9500C52—H52A0.9900
C18—C191.450 (3)C52—H52B0.9900
C18—H180.9500C53—C541.498 (3)
C19—C201.414 (3)C53—H53A0.9900
C20—C211.499 (2)C53—H53B0.9900
C21—C221.396 (3)C54—H54A0.9900
C21—C261.396 (3)C54—H54B0.9900
C22—C231.386 (3)C55—C561.500 (3)
C22—H220.9500C55—H55A0.9900
C23—C241.385 (3)C55—H55B0.9900
C23—H230.9500C56—H56A0.9900
C24—C251.383 (3)C56—H56B0.9900
C24—H240.9500
N4—Cd—N2140.94 (6)C31—C30—C29119.9 (2)
N4—Cd—N183.42 (6)C31—C30—H30120.0
N2—Cd—N183.30 (6)C29—C30—H30120.0
N4—Cd—N383.65 (6)C30—C31—C32120.3 (2)
N2—Cd—N383.46 (6)C30—C31—H31119.8
N1—Cd—N3140.15 (6)C32—C31—H31119.8
N4—Cd—O1111.79 (6)C31—C32—C27120.9 (2)
N2—Cd—O1106.98 (6)C31—C32—H32119.6
N1—Cd—O1117.09 (6)C27—C32—H32119.6
N3—Cd—O1102.71 (6)C34—C33—C38118.14 (18)
C4—N1—C1107.92 (15)C34—C33—C10121.03 (17)
C4—N1—Cd124.23 (12)C38—C33—C10120.82 (17)
C1—N1—Cd124.58 (12)C33—C34—C35120.72 (19)
C6—N2—C9107.97 (15)C33—C34—H34119.6
C6—N2—Cd125.45 (12)C35—C34—H34119.6
C9—N2—Cd123.56 (12)C36—C35—C34120.10 (19)
C14—N3—C11108.00 (15)C36—C35—H35119.9
C14—N3—Cd124.12 (12)C34—C35—H35119.9
C11—N3—Cd123.76 (12)C35—C36—C37119.82 (19)
C16—N4—C19108.22 (15)C35—C36—H36120.1
C16—N4—Cd124.97 (12)C37—C36—H36120.1
C19—N4—Cd125.15 (12)C36—C37—C38120.2 (2)
Cd—O1—H1O1112.7 (15)C36—C37—H37119.9
Cd—O1—H2O1112.8 (15)C38—C37—H37119.9
H1O1—O1—H2O1100 (2)C37—C38—C33121.0 (2)
C45—O2—C56113.19 (17)C37—C38—H38119.5
C46—O3—C47111.75 (17)C33—C38—H38119.5
C48—O4—C49112.29 (17)C44—C39—C40118.30 (18)
C51—O5—C50112.35 (18)C44—C39—C15120.65 (18)
C52—O6—C53113.09 (18)C40—C39—C15121.04 (17)
C54—O7—C55112.54 (17)C41—C40—C39120.65 (19)
N1—C1—C20125.29 (17)C41—C40—H40119.7
N1—C1—C2108.80 (16)C39—C40—H40119.7
C20—C1—C2125.88 (17)C42—C41—C40120.4 (2)
C3—C2—C1107.23 (17)C42—C41—H41119.8
C3—C2—H2126.4C40—C41—H41119.8
C1—C2—H2126.4C41—C42—C43119.7 (2)
C2—C3—C4107.29 (17)C41—C42—H42120.1
C2—C3—H3126.4C43—C42—H42120.1
C4—C3—H3126.4C42—C43—C44119.8 (2)
N1—C4—C5126.15 (17)C42—C43—H43120.1
N1—C4—C3108.74 (16)C44—C43—H43120.1
C5—C4—C3125.05 (17)C43—C44—C39121.1 (2)
C4—C5—C6126.64 (17)C43—C44—H44119.4
C4—C5—C27116.76 (16)C39—C44—H44119.4
C6—C5—C27116.60 (16)O2—C45—C46109.38 (18)
N2—C6—C5125.08 (17)O2—C45—H45A109.8
N2—C6—C7108.70 (16)C46—C45—H45A109.8
C5—C6—C7126.21 (17)O2—C45—H45B109.8
C8—C7—C6107.39 (17)C46—C45—H45B109.8
C8—C7—H7126.3H45A—C45—H45B108.2
C6—C7—H7126.3O3—C46—C45109.73 (18)
C7—C8—C9107.17 (17)O3—C46—H46A109.7
C7—C8—H8126.4C45—C46—H46A109.7
C9—C8—H8126.4O3—C46—H46B109.7
N2—C9—C10125.80 (17)C45—C46—H46B109.7
N2—C9—C8108.76 (16)H46A—C46—H46B108.2
C10—C9—C8125.40 (17)O3—C47—C48109.14 (18)
C9—C10—C11127.39 (17)O3—C47—H47A109.9
C9—C10—C33116.34 (16)C48—C47—H47A109.9
C11—C10—C33116.22 (16)O3—C47—H47B109.9
N3—C11—C10125.04 (17)C48—C47—H47B109.9
N3—C11—C12108.70 (16)H47A—C47—H47B108.3
C10—C11—C12126.24 (17)O4—C48—C47109.48 (19)
C13—C12—C11107.30 (17)O4—C48—H48A109.8
C13—C12—H12126.4C47—C48—H48A109.8
C11—C12—H12126.4O4—C48—H48B109.8
C12—C13—C14107.26 (17)C47—C48—H48B109.8
C12—C13—H13126.4H48A—C48—H48B108.2
C14—C13—H13126.4O4—C49—C50109.2 (2)
N3—C14—C15125.57 (17)O4—C49—H49A109.8
N3—C14—C13108.74 (16)C50—C49—H49A109.8
C15—C14—C13125.67 (17)O4—C49—H49B109.8
C14—C15—C16127.11 (17)C50—C49—H49B109.8
C14—C15—C39116.46 (16)H49A—C49—H49B108.3
C16—C15—C39116.39 (16)O5—C50—C49108.82 (19)
N4—C16—C15125.82 (17)O5—C50—H50A109.9
N4—C16—C17108.54 (16)C49—C50—H50A109.9
C15—C16—C17125.62 (18)O5—C50—H50B109.9
C18—C17—C16107.46 (17)C49—C50—H50B109.9
C18—C17—H17126.3H50A—C50—H50B108.3
C16—C17—H17126.3O5—C51—C52109.6 (2)
C17—C18—C19107.28 (17)O5—C51—H51A109.7
C17—C18—H18126.4C52—C51—H51A109.7
C19—C18—H18126.4O5—C51—H51B109.7
N4—C19—C20125.54 (17)C52—C51—H51B109.7
N4—C19—C18108.49 (16)H51A—C51—H51B108.2
C20—C19—C18125.86 (17)O6—C52—C51109.8 (2)
C19—C20—C1127.07 (17)O6—C52—H52A109.7
C19—C20—C21116.22 (16)C51—C52—H52A109.7
C1—C20—C21116.65 (16)O6—C52—H52B109.7
C22—C21—C26118.36 (17)C51—C52—H52B109.7
C22—C21—C20121.01 (17)H52A—C52—H52B108.2
C26—C21—C20120.62 (17)O6—C53—C54109.2 (2)
C23—C22—C21121.04 (19)O6—C53—H53A109.8
C23—C22—H22119.5C54—C53—H53A109.8
C21—C22—H22119.5O6—C53—H53B109.8
C24—C23—C22119.9 (2)C54—C53—H53B109.8
C24—C23—H23120.1H53A—C53—H53B108.3
C22—C23—H23120.1O7—C54—C53109.28 (19)
C25—C24—C23119.80 (19)O7—C54—H54A109.8
C25—C24—H24120.1C53—C54—H54A109.8
C23—C24—H24120.1O7—C54—H54B109.8
C24—C25—C26120.5 (2)C53—C54—H54B109.8
C24—C25—H25119.8H54A—C54—H54B108.3
C26—C25—H25119.8O7—C55—C56109.31 (17)
C25—C26—C21120.45 (19)O7—C55—H55A109.8
C25—C26—H26119.8C56—C55—H55A109.8
C21—C26—H26119.8O7—C55—H55B109.8
C28—C27—C32117.84 (18)C56—C55—H55B109.8
C28—C27—C5121.36 (17)H55A—C55—H55B108.3
C32—C27—C5120.80 (18)O2—C56—C55108.82 (19)
C29—C28—C27121.3 (2)O2—C56—H56A109.9
C29—C28—H28119.3C55—C56—H56A109.9
C27—C28—H28119.3O2—C56—H56B109.9
C30—C29—C28119.7 (2)C55—C56—H56B109.9
C30—C29—H29120.1H56A—C56—H56B108.3
C28—C29—H29120.1
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19 and C33–C38 rings respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O41.01 (2)2.06 (2)3.057 (2)176
O1—H2O1···O51.00 (2)2.55 (2)3.138 (2)118
O1—H2O1···O61.00 (2)2.04 (2)3.013 (2)165
C31—H31···Cg3i0.952.933.651 (2)133
C41—H41···Cg11ii0.952.913.794 (2)154
C44—H44···Cg2iii0.952.953.648 (2)131
C47—H47A···Cg20.992.913.898 (3)173
C54—H54B···Cg40.992.983.971 (3)176
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C44H28N4)(H2O)]·C12H24O6
Mr1007.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)17.1956 (2), 17.0918 (2), 17.3903 (2)
β (°) 106.416 (1)
V3)4902.72 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.48 × 0.40 × 0.30
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.959, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
53048, 10009, 8403
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.04
No. of reflections10009
No. of parameters619
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.53

Computer programs: CrysAlis PRO (Agilent, 2012), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Cd—N12.2296 (15)Cd—N42.2265 (15)
Cd—N22.2296 (15)Cd—O12.2368 (18)
Cd—N32.2322 (16)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19 and C33–C38 rings respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O41.01 (2)2.06 (2)3.057 (2)176.0
O1—H2O1···O61.00 (2)2.04 (2)3.013 (2)165.0
C31—H31···Cg3i0.952.933.651 (2)133.0
C41—H41···Cg11ii0.952.913.794 (2)154.0
C44—H44···Cg2iii0.952.953.648 (2)131.0
C47—H47A···Cg20.992.913.898 (3)173.0
C54—H54B···Cg40.992.983.971 (3)176.0
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennesse, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Goldberg, I., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K. & Strouse, C. E. (1991). J. Am. Chem. Soc. 113, 6549–6557.  CSD CrossRef CAS Web of Science Google Scholar
First citationEzzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114–m115.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.  CrossRef CAS Web of Science Google Scholar
First citationMaldonado, C. R., Quiros, M. & Salas, J. M. (2009). Polyhedron, 28, 911–916.  Web of Science CSD CrossRef CAS Google Scholar
First citationMansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985a). Acta Cryst. C41, 673–678.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRodesiler, P. F., Griffith, E. A. H., Charles, N. G., Lebioda, L. & Amma, E. L. (1985b). Inorg. Chem. 24, 4595–4600.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1–7.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F.-A., Chen, J.-H., Hsieh, H.-Y., Elango, S. & Hwang, L.-P. (2003). Inorg. Chem. 42, 4603–4609.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds