

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ -(Acetic acid)-di- μ -chlorido-bis[triphenyltellurium(IV)] monohydrate

Feng Hu,^a Chao Xu,^a Hua-Tian Shi,^a Qun Chen^b and Qian-Feng Zhang^{a,b*}

^aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and ^bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China Correspondence e-mail: zhangqf@ahut.edu.cn

Received 4 June 2013; accepted 24 June 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.032; wR factor = 0.078; data-to-parameter ratio = 20.0.

The asymmetric unit of the title compound, $C_{38}H_{34}Cl_2O_2Te_2$ · H_2O , contains two independent Te^{IV} cations, each coordinated by three phenyl ligands, two Cl⁻ anions and one acetic acid molecule in a distorted octahedral C_3Cl_2O geometry; the longer Te···Cl distances ranging from 3.2007 (11) to 3.4407 (11) Å and the longer Te···O distances of 3.067 (3) and 3.113 (3) Å indicate the weak bridge coordination. The Cl⁻ anion and acetic acid molecule bridge the two independent Te^{IV} cations, forming the dimeric complex molecule, in which the Te···Te separation is 3.7314 (4) Å. In the crystal, the water molecules of crystallization link the Te^{IV} complex molecules into chains running along the *b*-axis direction *via* O-H···O and O-H···Cl hydrogen bonds.

Related literature

For background to organotelluronium salts: see: Collins *et al.* (1988); Oilunkaniemi *et al.* (2001); Ziolo & Extine (1980); Ziolo & Troup (1979); Zhou *et al.* (1994). For related structures, see: Jeske *et al.* (1996); Oilunkaniemi *et al.* (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data $C_{38}H_{34}Cl_2O_2Te_2 \cdot H_2O$ $M_r = 866.77$

Monoclinic, $P2_1/n$ *a* = 13.9469 (6) Å b = 9.3616 (4) Åc = 27.7941 (12) Å $\beta = 96.584 (1)^{\circ}$ $V = 3605.0 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.692, T_{\max} = 0.813$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 407 parameters $wR(F^2) = 0.078$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.85$ e Å $^{-3}$ 8145 reflections $\Delta \rho_{min} = -0.51$ e Å $^{-3}$

Table 1

Selected bond lengths (Å).

Te1-C11	2.129 (3)	Te2-C41	2.129 (4)
Te1-C21	2.124 (3)	Te2-C51	2.126 (4)
Te1-C31	2.116 (3)	Te2-C61	2.118 (4)
Te1-Cl1	3.2366 (9)	Te2-Cl1	3.2802 (9)
Te1-Cl2	3.4407 (11)	Te2-Cl2	3.2007 (11)
Te1-O1	3.067 (3)	Te2-O1	3.113 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02-H2A\cdots O1W$ $01W-H1W\cdots Cl2^{i}$ $01W-H2W\cdots Cl2^{ii}$	0.84 0.88 0.87	2.13 2.38 2.41	2.972 (5) 3.205 (4) 3.200 (4)	174 155 152

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the Natural Science Foundation of China (90922008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5713).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Collins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590.
- Jeske, J., du Mont, W. W. & Jones, P. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2653-2658.
- Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50–56.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575–1570.
- Ziolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964-2967.
- Ziolo, R. F. & Troup, J. M. (1979). Inorg. Chem. 18, 2271-2274.

Mo $K\alpha$ radiation

 $0.22 \times 0.15 \times 0.12 \text{ mm}$

23122 measured reflections 8145 independent reflections

6494 reflections with $I > 2\sigma(I)$

 $\mu = 1.80 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.033$

supporting information

Acta Cryst. (2013). E69, o1171 [https://doi.org/10.1107/S160053681301739X] μ-(Acetic acid)-di-μ-chlorido-bis[triphenyltellurium(IV)] monohydrate Feng Hu, Chao Xu, Hua-Tian Shi, Qun Chen and Qian-Feng Zhang

S1. Comment

Organotelluronium salts, R₃TeX, have attracted considerable interest because of their application in organic synthetic chemistry (Zhou *et al.*, 1994). In the past several decades, a large number of triorganotelluronium salts have been prepared and many of their structures have been determined. Previous studies on such triorganotelluronium salts have shown that the salts have relatively complex structures due to weak bonding interactions between the tellurium atom and the anion (Ziolo & Extine, 1980). It has become evident that the interactions are sensitive to the nature of both them. Moreover, the structural features are also influenced by the organic groups and the presence or absence of solvent of crystallization (Ziolo & Troup, 1979). The X-ray structure determinations of several (Ph₃Te)X (X = halide, SCN⁻, NCO⁻, [NO₃]⁻, ¹/₂[SO₄]²⁻, ¹/₂[Hg₂Cl₆]²⁻, ¹/₂[PtCl₆]²⁻, ¹/₂[IrCl₆]²⁻ and [AuCl₄]⁻) salts have established that in the solid state the structural features are governed by weak secondary tellurium-anion interactions which may result in the trigonal pyramidal geometry around tellurium into a five- or six-coordinate entity (Collins *et al.*, 1988; Oilunkaniemi *et al.*, 2001; Ziolo & Extine, 1980; Ziolo & Troup, 1979). In this paper, we report the structural characterization of bis(μ_{2^-} chloride)-(μ_{2} -acetic acid-O)- bis(triphenyltelluronium) hydrate monosolvate which is expected to expand the pool of the known organotelluronium chemistry.

The structure of the title compound, $(\mu$ -Cl)₂(μ -CH₃COOH)(Ph₃Te)₂.H₂O (HAc = CH₃COOH), consists of two Ph₃Te⁺ cations, two chloride anions, one acetic acid molecule and one water molecule linked by a complex network of Te···Cl and Te···O secondery bonds and hydrogen bonds into infinate chains. The geometry around the tellurium atom is pseudo-octahedral, with three phenyl groups, two chloride atoms and one oxygen atom from the acetic acid. The two Ph₃Te⁺ cations occupy on the opposite trigonal faces of octahedra, as shown in Fig. 1. The two tellurium atoms form two secondary bonds of 3.068 (4) and 3.113 (4) Å invoving the oxygen atom of the acetic acid molecule, which are longer than those in (Ph₃Te)₂SO₄.5H₂O (av. 2.797 (9) Å) (Collins *et al.*, 1988), but are still shorter than the sum of the van der Waals radii of the tellurium and oxygen atoms. The two bridging Te···Cl distances involving non-hydrogen-bonded Cl(1) atom are almost equal (3.236 (3) and 3.279 (3) Å), while those involving hydrogen-bonded Cl(2) atom are inequal (3.199 (3) and 3.439 (3) Å). The average Te···Cl distances of 3.288 (3) Å in the title compound has its expected structure as well as normal distances and angles (Allen, 2002), for example, the six Te—C bond lengths in the two cations are normal and have a mean value 2.124 (4) Ph₃Te⁺ (Jeske *et al.*, 1996). The [(μ -Cl)₂(μ -HAc)(Ph₃Te)₂] moieties are further linked by two kinds of the intermolecular hydrogen bonds of (H₂O)O—H···Cl (av. O···Cl = 3.205 (4) Å) and (HAc)O—H···O(H₂O) (O···O = 2.962 (2) Å), forming one-dimensional infinate chains (see Fig. 2).

S2. Experimental

Ph₃TeCl (212 mg, 0.55 mmol) in water (5 mL) was added into a hot aqueous solution (5 mL) containing the acetic acid (69%, 0.025 mL, 0.22 mmol). A pale brown precipitate was obtained almost immediately. The precipitate was filtered,

washed with water and Et_2O , and dried. Recrystallization from acetone-water (1:1) at room temperature afforded brown block crystals suitable for X-ray diffraction. Yield: 140 mg (57%).

Figure 1

The structure of the title compound $(\mu$ -Cl)₂ $(\mu$ -CH₃COOH)(Ph₃Te)₂.H₂O, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. The Te···O and Te···Cl secondary bonds were drawn in lines.

Figure 2

The intermolecular O-H…Cl and O-H…O hydrogen-bonds (dash lines) are displayed in the crystal lattice.

µ-(Acetic acid)-di-µ-chlorido-bis[triphenyltellurium(IV)] monohydrate

Crystal data

 $C_{38}H_{34}Cl_2O_2Te_2 \cdot H_2O$ $M_r = 866.77$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.9469 (6) Å b = 9.3616 (4) Å c = 27.7941 (12) Å $\beta = 96.584$ (1)° V = 3605.0 (3) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans F(000) = 1704 $D_x = 1.597$ Mg m⁻³ Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 2274 reflections $\theta = 2.0-23.6^{\circ}$ $\mu = 1.80$ mm⁻¹ T = 296 K Block, brown $0.22 \times 0.15 \times 0.12$ mm

Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.692, T_{max} = 0.813$ 23122 measured reflections 8145 independent reflections

6494 reflections with $I > 2\sigma(I)$	$h = -15 \rightarrow 18$
$R_{\rm int} = 0.033$	$k = -11 \rightarrow 12$
$\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 1.5^{\circ}$	$l = -36 \rightarrow 36$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
8145 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 1.0404P]$
407 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.85 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Tel	0.755476 (16)	0.46663 (2)	0.414658 (7)	0.03090 (7)
Te2	0.516642 (16)	0.42865 (2)	0.340189 (7)	0.03245 (7)
Cl1	0.56267 (6)	0.63914 (9)	0.43435 (3)	0.03886 (19)
Cl2	0.69532 (8)	0.57571 (11)	0.29684 (4)	0.0540 (3)
01	0.6465 (2)	0.1871 (3)	0.38938 (11)	0.0633 (8)
O2	0.6185 (3)	-0.0486 (4)	0.37876 (12)	0.0844 (11)
H2A	0.6414	-0.0550	0.3521	0.127*
O1W	0.7110 (4)	-0.0844 (4)	0.28835 (14)	0.1222 (17)
H1W	0.7501	-0.0326	0.2727	0.183*
H2W	0.7111	-0.1736	0.2797	0.183*
C11	0.8800 (2)	0.3756 (4)	0.38905 (12)	0.0360 (8)
C12	0.8628 (3)	0.2789 (4)	0.35126 (13)	0.0462 (9)
H12	0.7999	0.2523	0.3402	0.055*
C13	0.9382 (3)	0.2225 (5)	0.33024 (16)	0.0623 (12)
H13	0.9266	0.1576	0.3049	0.075*
C14	1.0314 (3)	0.2618 (5)	0.34658 (16)	0.0659 (13)
H14	1.0826	0.2226	0.3323	0.079*
C15	1.0495 (3)	0.3588 (5)	0.38395 (15)	0.0577 (11)
H15	1.1126	0.3854	0.3947	0.069*
C16	0.9731 (3)	0.4166 (4)	0.40537 (13)	0.0449 (9)
H16	0.9846	0.4822	0.4305	0.054*
C21	0.7740 (2)	0.3768 (4)	0.48528 (11)	0.0338 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C22	0.6948 (3)	0.3806 (4)	0.51135 (13)	0.0456 (9)
H22	0.6373	0.4223	0.4980	0.055*
C23	0.7021 (3)	0.3219 (5)	0.55749 (14)	0.0557 (11)
H23	0.6495	0.3243	0.5752	0.067*
C24	0.7873 (3)	0.2602 (5)	0.57685 (13)	0.0549 (11)
H24	0.7920	0.2209	0.6078	0.066*
C25	0.8653 (3)	0.2560 (5)	0.55101 (14)	0.0528 (10)
H25	0.9228	0.2146	0.5646	0.063*
C26	0.8587 (3)	0.3134 (4)	0.50456 (13)	0.0439 (9)
H26	0.9111	0.3088	0.4867	0.053*
C31	0.8211(2)	0.6653 (4)	0.43414(12)	0.0343(7)
C32	0.8246(3)	0.0000(1) 0.7642(4)	0.39828(14)	0.0315((1))
H32	0.8023	0.7412	0.3664	0.059*
C33	0.8616 (3)	0.8995 (5)	0.40968 (19)	0.059
Н33	0.8662	0.9657	0 3851	0.079*
C34	0.8915 (3)	0.9365 (5)	0.3651 0.45694 (19)	0.079
H34	0.9137	1.0283	0.4646	0.075*
C35	0.8881(3)	0.8355(5)	0.49287(17)	0.0613(12)
H35	0.0001 (5)	0.8586	0.5248	0.074*
C36	0.8524(3)	0.6998 (4)	0.3210 0.48167(14)	0.071 0.0483(10)
H36	0.8496	0.6323	0.5060	0.058*
C41	0.5044(2)	0.3287(4)	0.27097(12)	0.0343(7)
C42	0.5011(2) 0.5441(3)	0.1965(4)	0.26687(14)	0.0519(1)
H42	0.5711	0.1479	0.2943	0.062*
C43	0.5437(3)	0.1352(5)	0.22118(17)	0.002
H43	0.5694	0.0445	0.22110 (17)	0.073*
C44	0 5058 (3)	0.2077(5)	0.18109(15)	0.0591 (12)
H44	0.5060	0.1663	0.1507	0.071*
C45	0.4675 (3)	0.3409 (5)	0.18495 (14)	0.0568 (11)
H45	0.4424	0.3905	0.1574	0.068*
C46	0.4662(3)	0.4013(4)	0.23030(13)	0.0432(9)
H46	0.4395	0 4915	0.2333	0.052*
C51	0.4127(2)	0.3004 (4)	0.37028(12)	0.0376 (8)
C52	0.4032(3)	0.3210(4)	0.41894(13)	0.0483 (9)
H52	0.4387	0.3920	0.4364	0.058*
C53	0.3407(3)	0.2354(5)	0.44147 (15)	0.0601 (12)
Н53	0.3340	0.2488	0.4741	0.072*
C54	0.2889 (3)	0.1311 (5)	0.41563 (17)	0.0664 (13)
H54	0.2474	0.0728	0.4308	0.080*
C55	0.2980 (4)	0.1127 (5)	0.36745 (18)	0.0728 (14)
H55	0.2615	0.0428	0.3500	0.087*
C56	0.3603 (3)	0.1955 (5)	0.34439 (14)	0.0556 (11)
H56	0.3668	0.1809	0.3118	0.067*
C61	0.4204 (3)	0.5959 (4)	0.31641 (12)	0.0358 (8)
C62	0.3217 (3)	0.5755 (4)	0.31313 (13)	0.0457 (9)
H62	0.2966	0.4907	0.3239	0.055*
C63	0.2602 (3)	0.6828 (5)	0.29365 (14)	0.0563 (11)
H63	0.1937	0.6694	0.2909	0.068*

C64	0.2976 (4)	0.8087 (5)	0.27849 (16)	0.0660 (13)	
H64	0.2564	0.8800	0.2651	0.079*	
C65	0.3955 (4)	0.8292 (5)	0.28302 (17)	0.0683 (13)	
H65	0.4204	0.9154	0.2734	0.082*	
C66	0.4581 (3)	0.7214 (4)	0.30191 (15)	0.0541 (10)	
H66	0.5246	0.7349	0.3046	0.065*	
C91	0.6216 (3)	0.0692 (4)	0.40485 (15)	0.0510 (10)	
C92	0.5943 (5)	0.0527 (5)	0.45455 (18)	0.0861 (17)	
H92A	0.6515	0.0444	0.4771	0.129*	
H92B	0.5556	-0.0316	0.4561	0.129*	
H92C	0.5580	0.1347	0.4626	0.129*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Tel	0.03216 (13)	0.03165 (12)	0.02833 (11)	-0.00023 (9)	0.00104 (9)	-0.00042 (9)
Te2	0.03311 (13)	0.03433 (13)	0.02905 (12)	0.00003 (9)	-0.00017 (9)	-0.00085 (9)
Cl1	0.0444 (5)	0.0338 (5)	0.0383 (4)	0.0004 (4)	0.0045 (4)	-0.0026 (3)
Cl2	0.0564 (6)	0.0542 (6)	0.0532 (6)	-0.0070 (5)	0.0135 (5)	0.0015 (5)
01	0.085 (2)	0.0377 (16)	0.0680 (19)	-0.0048 (15)	0.0124 (16)	0.0084 (14)
O2	0.110 (3)	0.061 (2)	0.083 (3)	0.002 (2)	0.014 (2)	-0.0034 (18)
O1W	0.224 (5)	0.067 (3)	0.091 (3)	0.033 (3)	0.084 (3)	0.017 (2)
C11	0.039 (2)	0.0372 (19)	0.0330 (18)	0.0044 (15)	0.0080 (15)	0.0036 (15)
C12	0.049 (2)	0.042 (2)	0.048 (2)	0.0034 (18)	0.0061 (18)	-0.0059 (17)
C13	0.074 (3)	0.062 (3)	0.054 (3)	0.010 (2)	0.019 (2)	-0.017 (2)
C14	0.067 (3)	0.072 (3)	0.063 (3)	0.027 (3)	0.027 (2)	0.007 (2)
C15	0.041 (2)	0.074 (3)	0.059 (3)	0.011 (2)	0.012 (2)	0.011 (2)
C16	0.043 (2)	0.051 (2)	0.041 (2)	0.0033 (18)	0.0070 (17)	0.0045 (17)
C21	0.042 (2)	0.0333 (18)	0.0258 (16)	-0.0018 (15)	0.0037 (14)	-0.0012 (14)
C22	0.046 (2)	0.053 (2)	0.039 (2)	0.0079 (18)	0.0082 (17)	0.0061 (17)
C23	0.057 (3)	0.071 (3)	0.043 (2)	0.010 (2)	0.0200 (19)	0.012 (2)
C24	0.074 (3)	0.058 (3)	0.033 (2)	0.009 (2)	0.006 (2)	0.0118 (18)
C25	0.051 (2)	0.063 (3)	0.042 (2)	0.013 (2)	-0.0044 (19)	0.0086 (19)
C26	0.039 (2)	0.051 (2)	0.043 (2)	0.0064 (17)	0.0094 (16)	0.0040 (17)
C31	0.0308 (18)	0.0336 (19)	0.0383 (19)	0.0003 (14)	0.0037 (14)	-0.0060 (15)
C32	0.055 (2)	0.039 (2)	0.052 (2)	-0.0055 (19)	-0.0016 (19)	0.0029 (18)
C33	0.065 (3)	0.043 (3)	0.087 (4)	-0.011 (2)	0.004 (3)	0.012 (2)
C34	0.053 (3)	0.039 (2)	0.096 (4)	-0.012 (2)	0.011 (3)	-0.018 (2)
C35	0.056 (3)	0.065 (3)	0.065 (3)	-0.017 (2)	0.009 (2)	-0.029 (2)
C36	0.050 (2)	0.052 (2)	0.044 (2)	-0.0111 (19)	0.0073 (18)	-0.0054 (18)
C41	0.0322 (18)	0.0373 (19)	0.0339 (18)	-0.0061 (15)	0.0059 (14)	-0.0033 (14)
C42	0.062 (3)	0.048 (2)	0.045 (2)	0.010 (2)	0.0047 (19)	-0.0006 (18)
C43	0.066 (3)	0.047 (3)	0.072 (3)	0.005 (2)	0.019 (2)	-0.022 (2)
C44	0.070 (3)	0.067 (3)	0.043 (2)	-0.009(2)	0.017 (2)	-0.021 (2)
C45	0.074 (3)	0.060 (3)	0.035 (2)	-0.010 (2)	-0.0005 (19)	-0.0055 (19)
C46	0.050 (2)	0.041 (2)	0.037 (2)	-0.0042 (17)	-0.0004 (17)	-0.0051 (16)
C51	0.039 (2)	0.038 (2)	0.0369 (19)	0.0005 (15)	0.0055 (15)	0.0045 (15)
C52	0.058 (3)	0.049 (2)	0.040 (2)	-0.0018 (19)	0.0103 (18)	-0.0023 (17)

supporting information

C53	0.074 (3)	0.064 (3)	0.046 (2)	-0.008(2)	0.024 (2)	0.003 (2)
C54	0.074 (3)	0.060 (3)	0.072 (3)	-0.016 (2)	0.034 (3)	0.000 (2)
C55	0.077 (3)	0.071 (3)	0.075 (3)	-0.037 (3)	0.027 (3)	-0.022 (3)
C56	0.060 (3)	0.064 (3)	0.044 (2)	-0.019 (2)	0.0124 (19)	-0.012 (2)
C61	0.040(2)	0.037 (2)	0.0300 (17)	0.0049 (15)	0.0004 (15)	-0.0021 (14)
C62	0.044 (2)	0.049 (2)	0.043 (2)	0.0060 (18)	0.0008 (17)	0.0014 (17)
C63	0.048 (3)	0.066 (3)	0.053 (2)	0.014 (2)	-0.0031 (19)	-0.003 (2)
C64	0.072 (3)	0.060 (3)	0.063 (3)	0.027 (3)	-0.007(2)	-0.001 (2)
C65	0.080 (4)	0.040 (3)	0.085 (3)	0.007 (2)	0.009 (3)	0.006 (2)
C66	0.053 (3)	0.042 (2)	0.068 (3)	0.0009 (19)	0.007 (2)	0.001 (2)
C91	0.060 (3)	0.036 (2)	0.056 (3)	0.0077 (19)	0.001 (2)	0.0035 (18)
C92	0.141 (5)	0.057 (3)	0.065 (3)	0.008 (3)	0.035 (3)	0.009 (2)

Geometric parameters (Å, °)

Te1—C11	2.129 (3)	С33—Н33	0.9300
Te1—C21	2.124 (3)	C34—C35	1.380 (6)
Te1—C31	2.116 (3)	C34—H34	0.9300
Te1—Cl1	3.2366 (9)	C35—C36	1.387 (6)
Te1—Cl2	3.4407 (11)	С35—Н35	0.9300
Te1—O1	3.067 (3)	С36—Н36	0.9300
Te2—C41	2.129 (4)	C41—C42	1.366 (5)
Te2—C51	2.126 (4)	C41—C46	1.373 (5)
Te2—C61	2.118 (4)	C42—C43	1.393 (5)
Te2—Cl1	3.2802 (9)	C42—H42	0.9300
Te2—Cl2	3.2007 (11)	C43—C44	1.359 (6)
Te2—O1	3.113 (3)	C43—H43	0.9300
O1—C91	1.249 (5)	C44—C45	1.366 (6)
O2—C91	1.318 (5)	C44—H44	0.9300
O2—H2A	0.8430	C45—C46	1.384 (5)
O1W—H1W	0.8801	C45—H45	0.9300
O1W—H2W	0.8691	C46—H46	0.9300
C11—C16	1.380 (5)	C51—C56	1.377 (5)
C11—C12	1.387 (5)	C51—C52	1.388 (5)
C12—C13	1.367 (5)	C52—C53	1.385 (5)
C12—H12	0.9300	С52—Н52	0.9300
C13—C14	1.376 (6)	C53—C54	1.369 (6)
С13—Н13	0.9300	С53—Н53	0.9300
C14—C15	1.381 (6)	C54—C55	1.371 (6)
C14—H14	0.9300	C54—H54	0.9300
C15—C16	1.388 (5)	C55—C56	1.376 (6)
C15—H15	0.9300	С55—Н55	0.9300
C16—H16	0.9300	C56—H56	0.9300
C21—C26	1.375 (5)	C61—C66	1.367 (5)
C21—C22	1.389 (5)	C61—C62	1.383 (5)
C22—C23	1.388 (5)	C62—C63	1.390 (5)
С22—Н22	0.9300	C62—H62	0.9300
C23—C24	1.374 (5)	C63—C64	1.375 (6)

supporting information

C22 1122	0.0200	C(2) 11(2)	0.0200
C23—H23	0.9300	С63—Н63	0.9300
C24—C25	1.372 (6)	C64—C65	1.370 (6)
C24—H24	0.9300	С64—Н64	0.9300
C25—C26	1.392 (5)	C65—C66	1.397 (6)
С25—Н25	0.9300	С65—Н65	0.9300
С26—Н26	0.9300	С66—Н66	0.9300
C31—C32	1.365 (5)	C91—C92	1.483 (6)
C31—C36	1.381 (5)	С92—Н92А	0.9600
C32—C33	1.391 (6)	С92—Н92В	0.9600
С32—Н32	0.9300	С92—Н92С	0.9600
$C_{33} - C_{34}$	1 376 (6)		
	1.570(0)		
C31_Te1_C21	96 21 (13)	С33_С32_Н32	120.2
$C_{31} = 101 = 0.21$	95 27 (13)	C_{34} C_{33} C_{32}	120.2 120.7 (4)
C_{21} Te1 C_{11}	95.27(13)	$C_{24} = C_{22} = C_{22}$	120.7 (4)
	97.03 (13)	$C_{34} = C_{33} = H_{33}$	119.7
	84.04 (2)	C32—C33—H33	119.7
CII—IeI—OI	93.72 (12)	C33—C34—C35	119.1 (4)
Cl2—Te1—O1	88.56 (12)	C33—C34—H34	120.4
Cl1—Te1—C11	169.01 (13)	С35—С34—Н34	120.4
Cl1—Te1—C21	93.25 (13)	C34—C35—C36	120.4 (4)
Cl1—Te1—C31	82.03 (13)	С34—С35—Н35	119.8
Cl2—Te1—C11	85.40 (13)	С36—С35—Н35	119.8
Cl2—Te1—C21	170.99 (13)	C35—C36—C31	119.6 (4)
Cl2—Te1—C31	91.93 (13)	С35—С36—Н36	120.2
O1—Te1—C11	89.08 (13)	С31—С36—Н36	120.2
O1—Te1—C21	83.03 (13)	C42—C41—C46	120.2 (3)
01—Te1—C31	175.64 (13)	C42—C41—Te2	118.8 (3)
C61—Te2—C51	95.97 (14)	C46—C41—Te2	120.6 (3)
C61—Te2—C41	93 47 (13)	$C_{41} - C_{42} - C_{43}$	1193(4)
C_{51} Te2 C_{41}	96 86 (13)	C41 - C42 - H42	120.3
C_{11} T_{e2} C_{12}	87 27 (2)	C_{43} C_{42} H_{42}	120.3
$C_{11} = T_{22} = C_{12}$	07.27(2) 02.02(12)	C_{43} C_{42} C_{42} C_{42}	120.3
$C_{11} = 1e_2 = 01$	92.02(12)	$C_{44} = C_{43} = C_{42}$	120.2 (4)
$C_{12} - 1e_2 - O_1$	92.23(12)	$C_{44} = C_{43} = H_{43}$	119.9
$C11 - T_{12} - C_{41}$	100.75(15)	$C42 - C43 - \Pi43$	119.9
	96.04 (13)	C43 - C44 - C45	120.7 (4)
	82.17 (13)	C43—C44—H44	119.7
Cl2— $le2$ — $C4l$	80.47 (13)	С45—С44—Н44	119.7
Cl2—Te2—C51	170.50 (13)	C44—C45—C46	119.4 (4)
Cl2—Te2—C61	93.29 (13)	C44—C45—H45	120.3
O1—Te2—C41	93.44 (13)	C46—C45—H45	120.3
O1—Te2—C51	78.78 (13)	C41—C46—C45	120.2 (4)
O1—Te2—C61	171.78 (13)	C41—C46—H46	119.9
Te1—Cl1—Te2	69.86 (2)	C45—C46—H46	119.9
Te1—Cl2—Te2	68.26 (2)	C56—C51—C52	120.3 (3)
Te1—O1—Te2	74.28 (12)	C56—C51—Te2	122.9 (3)
C91—O2—H2A	123.5	C52—C51—Te2	116.8 (3)
H1W—O1W—H2W	111.9	C53—C52—C51	119.7 (4)
C16—C11—C12	120.3 (3)	С53—С52—Н52	120.1

C16-C11-Te1	123.5 (3)	С51—С52—Н52	120.1
C12-C11-Te1	115.9 (3)	C54—C53—C52	119.9 (4)
C13—C12—C11	120.1 (4)	С54—С53—Н53	120.1
C13—C12—H12	120.0	С52—С53—Н53	120.1
C11—C12—H12	120.0	C55—C54—C53	120.0 (4)
C12—C13—C14	120.0 (4)	С55—С54—Н54	120.0
С12—С13—Н13	120.0	С53—С54—Н54	120.0
C14—C13—H13	120.0	C54—C55—C56	121.2 (4)
C13—C14—C15	120.5 (4)	С54—С55—Н55	119.4
C13—C14—H14	119.7	С56—С55—Н55	119.4
C15—C14—H14	119.7	C51—C56—C55	119.0 (4)
C14—C15—C16	119.7 (4)	С51—С56—Н56	120.5
C14—C15—H15	120.2	С55—С56—Н56	120.5
C16—C15—H15	120.2	C66—C61—C62	120.9 (4)
C11—C16—C15	119.4 (4)	C66—C61—Te2	118.4 (3)
C11—C16—H16	120.3	C62—C61—Te2	120.6 (3)
C15—C16—H16	120.3	C61—C62—C63	119.4 (4)
C26—C21—C22	120.4 (3)	С61—С62—Н62	120.3
C26-C21-Te1	122.6 (2)	С63—С62—Н62	120.3
C22-C21-Te1	116.9 (3)	C64—C63—C62	120.0 (4)
C21—C22—C23	119.6 (4)	С64—С63—Н63	120.0
C21—C22—H22	120.2	С62—С63—Н63	120.0
C23—C22—H22	120.2	C63—C64—C65	120.1 (4)
C24—C23—C22	119.8 (4)	С63—С64—Н64	119.9
С24—С23—Н23	120.1	С65—С64—Н64	119.9
С22—С23—Н23	120.1	C64—C65—C66	120.4 (4)
C23—C24—C25	120.6 (4)	С64—С65—Н65	119.8
C23—C24—H24	119.7	С66—С65—Н65	119.8
C25—C24—H24	119.7	C61—C66—C65	119.1 (4)
C24—C25—C26	120.2 (4)	С61—С66—Н66	120.4
C24—C25—H25	119.9	С65—С66—Н66	120.4
С26—С25—Н25	119.9	O1—C91—O2	122.9 (4)
C21—C26—C25	119.4 (3)	O1—C91—C92	121.6 (4)
С21—С26—Н26	120.3	O2—C91—C92	115.5 (4)
C25—C26—H26	120.3	С91—С92—Н92А	109.5
C32—C31—C36	120.4 (3)	С91—С92—Н92В	109.5
C32—C31—Te1	117.4 (3)	H92A—C92—H92B	109.5
C36—C31—Te1	122.0 (3)	С91—С92—Н92С	109.5
C31—C32—C33	119.6 (4)	H92A—C92—H92C	109.5
С31—С32—Н32	120.2	H92B—C92—H92C	109.5

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
02—H2A…O1W	0.84	2.13	2.972 (5)	174

			supportin	supporting information		
O1W—H1 W ····Cl2 ⁱ	0.88	2.38	3.205 (4)	155		
O1 <i>W</i> —H2 <i>W</i> ····Cl2 ⁱⁱ	0.87	2.41	3.200 (4)	152		

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) x, y-1, z.