[Journal logo]

Volume 69 
Part 7 
Page o1171  
July 2013  

Received 4 June 2013
Accepted 24 June 2013
Online 29 June 2013

Key indicators
Single-crystal X-ray study
T = 296 K
Mean [sigma](C-C) = 0.006 Å
R = 0.032
wR = 0.078
Data-to-parameter ratio = 20.0
Details
Open access

[mu]-(Acetic acid)-di-[mu]-chlorido-bis[triphenyltellurium(IV)] monohydrate

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
Correspondence e-mail: zhangqf@ahut.edu.cn

The asymmetric unit of the title compound, C38H34Cl2O2Te2·H2O, contains two independent TeIV cations, each coordinated by three phenyl ligands, two Cl- anions and one acetic acid molecule in a distorted octahedral C3Cl2O geometry; the longer Te...Cl distances ranging from 3.2007 (11) to 3.4407 (11) Å and the longer Te...O distances of 3.067 (3) and 3.113 (3) Å indicate the weak bridge coordination. The Cl- anion and acetic acid molecule bridge the two independent TeIV cations, forming the dimeric complex molecule, in which the Te...Te separation is 3.7314 (4) Å. In the crystal, the water molecules of crystallization link the TeIV complex molecules into chains running along the b-axis direction via O-H...O and O-H...Cl hydrogen bonds.

Related literature

For background to organotelluronium salts: see: Collins et al. (1988[Collins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590.]); Oilunkaniemi et al. (2001[Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50-56.]); Ziolo & Extine (1980[Ziolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964-2967.]); Ziolo & Troup (1979[Ziolo, R. F. & Troup, J. M. (1979). Inorg. Chem. 18, 2271-2274.]); Zhou et al. (1994[Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575-1570.]). For related structures, see: Jeske et al. (1996[Jeske, J., du Mont, W. W. & Jones, P. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2653-2658.]); Oilunkaniemi et al. (2001[Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50-56.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C38H34Cl2O2Te2·H2O

  • Mr = 866.77

  • Monoclinic, P 21 /n

  • a = 13.9469 (6) Å

  • b = 9.3616 (4) Å

  • c = 27.7941 (12) Å

  • [beta] = 96.584 (1)°

  • V = 3605.0 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.80 mm-1

  • T = 296 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.813

  • 23122 measured reflections

  • 8145 independent reflections

  • 6494 reflections with I > 2[sigma](I)

  • Rint = 0.033

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.08

  • 8145 reflections

  • 407 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.85 e Å-3

  • [Delta][rho]min = -0.51 e Å-3

Table 1
Selected bond lengths (Å)

Te1-C11 2.129 (3)
Te1-C21 2.124 (3)
Te1-C31 2.116 (3)
Te1-Cl1 3.2366 (9)
Te1-Cl2 3.4407 (11)
Te1-O1 3.067 (3)
Te2-C41 2.129 (4)
Te2-C51 2.126 (4)
Te2-C61 2.118 (4)
Te2-Cl1 3.2802 (9)
Te2-Cl2 3.2007 (11)
Te2-O1 3.113 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2-H2A...O1W 0.84 2.13 2.972 (5) 174
O1W-H1W...Cl2i 0.88 2.38 3.205 (4) 155
O1W-H2W...Cl2ii 0.87 2.41 3.200 (4) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5713 ).


Acknowledgements

This project was supported by the Natural Science Foundation of China (90922008).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.  [Web of Science] [CrossRef] [IUCr Journals]
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Collins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590.  [CrossRef] [ChemPort] [Web of Science]
Jeske, J., du Mont, W. W. & Jones, P. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2653-2658.  [CrossRef] [ChemPort]
Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50-56.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575-1570.  [CrossRef] [ChemPort]
Ziolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964-2967.  [CrossRef] [ChemPort] [Web of Science]
Ziolo, R. F. & Troup, J. M. (1979). Inorg. Chem. 18, 2271-2274.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o1171  [ doi:10.1107/S160053681301739X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.