[Journal logo]

Volume 69 
Part 7 
Page o1066  
July 2013  

Received 21 May 2013
Accepted 26 May 2013
Online 8 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
R = 0.038
wR = 0.086
Data-to-parameter ratio = 10.1
Details
Open access

2-[4-(Carbazol-9-yl)phenyl]-1,3-diethyl-1,3-diphenylguanidine

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
Correspondence e-mail: willi.kantlehner@htw-aalen.de

In the title compound, C35H32N4, the C-N bond lengths in the guanidine part are 1.286 (3), 1.387 (2) and 1.414 (2) Å, indicating double- and single-bond character. The N-C-N angles are 114.48 (17), 118.78 (17) and 126.72 (17)°, showing a deviation of the CN3 plane from an ideal trigonal-planar geometry. The carbazole ring system is almost planar (r.m.s. deviation = 0.002 Å). In the crystal, molecules are connected by weak C-H...N hydrogen bonds, generating a zigzag chain along the ac plane. Weak [pi]-[pi] interactions [centroid-centroid distance = 3.785 (1) Å] between two phenyl rings of the guanidine moiety are also present.

Related literature

For synthesis and characterization of carbazole-based compounds for blue OLEDs, see: Agarwal et al. (2011[Agarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466-473.]). For the crystal structure of 9-(4-nitrophenyl)-9H-carbazole, see: Chen et al. (2005[Chen, L.-Q., Yang, C.-L., Meng, X.-G. & Qin, J.-G. (2005). Acta Cryst. E61, o3073-o3075.]). For the crystal structure of carbazole, see: Gerkin & Reppart (1986[Gerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480-482.]). For synthesis and characterization of light-emitting carbazole derivatives, see: Thomas et al. (2001[Thomas, K. R. J., Lin, J. T., Tao, Y. T. & Ko, C. (2001). J. Am. Chem. Soc. 123, 9404-9411.]). For the crystal structure of N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)ethyl]guanidine, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.]).

[Scheme 1]

Experimental

Crystal data
  • C35H32N4

  • Mr = 508.65

  • Orthorhombic, P 21 21 21

  • a = 9.4741 (2) Å

  • b = 15.9500 (6) Å

  • c = 17.9102 (8) Å

  • V = 2706.45 (17) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.07 mm-1

  • T = 100 K

  • 0.19 × 0.15 × 0.12 mm

Data collection
  • Bruker-Nonius KappaCCD diffractometer

  • 6390 measured reflections

  • 3588 independent reflections

  • 3109 reflections with I > 2[sigma](I)

  • Rint = 0.032

Refinement
  • R[F2 > 2[sigma](F2)] = 0.038

  • wR(F2) = 0.086

  • S = 1.04

  • 3588 reflections

  • 354 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.18 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C28-H28A...N3i 0.95 2.79 3.593 (3) 143
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2551 ).


Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring of the crystal data and Dr B. Iliev (IoLiTec GmbH) for the synthesis of the title compound.

References

Agarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466-473.  [Web of Science] [CrossRef] [ChemPort]
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chen, L.-Q., Yang, C.-L., Meng, X.-G. & Qin, J.-G. (2005). Acta Cryst. E61, o3073-o3075.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Gerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480-482.  [CrossRef] [IUCr Journals]
Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Thomas, K. R. J., Lin, J. T., Tao, Y. T. & Ko, C. (2001). J. Am. Chem. Soc. 123, 9404-9411.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.  [CSD] [CrossRef] [IUCr Journals]


Acta Cryst (2013). E69, o1066  [ doi:10.1107/S1600536813014517 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.