

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Chloromethyl-5-(2,5-dioxooxolan-3yl)-3,3a,4,5-tetrahydro-1*H*-naphtho-[1,2-c]furan-1,3-dione

Y. Z. Guo,^a Y. Z. Song,^b J. G. Liu^a* and S. Y. Yang^a

^aLaboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, People's Republic of China, and ^bBeijing BOE Display Technology Co., Ltd, No. 118 Jinghaiyilu, BDA, Beijing 100176 Correspondence e-mail: liujg@iccas.ac.cn

Received 12 April 2013; accepted 30 May 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.108; data-to-parameter ratio = 14.9.

The title compound, $C_{17}H_{13}ClO_6$, is an asymmetric alicyclic dianhydride containing a chloromethyl-substituted tetrahydronaphthalene moiety. The cyclohexene ring in the tetrahydronaphthalene moiety exhibits an envelope conformation with the tertiary C atom as the flap The dihedral angle between the two anhydride rings is 79.96 (6)°, while those between the benzene ring and the non-fused and fused anhydride rings are 71.03 (5) and 42.57 (7)°, respectively. In the crystal, molecules are connected by weak C-H···O interactions, forming a three-dimensional supramolecular structure.

Related literature

For background to polyimides, see: Li *et al.* (2005); Liaw *et al.* (2012); Zhang *et al.* (2003); Zhong *et al.* (2004). For background to and applications of tetrahydronaphthalenecontaining alicyclic dianhydrides, see: Guo, Shen *et al.* (2013). For the structure of a related compound, see: Guo, Liu & Yang (2013) and for its synthesis, see: Hall *et al.* (1982); Guo *et al.* (2012). For puckering parameters, see: Cremer & Pople (1975).

9192 measured reflections 3238 independent reflections 3034 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $R_{\rm int} = 0.035$

217 parameters

 $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\min} = -0.44 \text{ e} \text{ Å}^{-3}$

Experimental

Crystal data

-	
C ₁₇ H ₁₃ ClO ₆	$\gamma = 79.614 \ (8)^{\circ}$
$M_r = 348.72$	V = 712.1 (3) Å ³
Triclinic, P1	Z = 2
a = 6.8988 (15) Å	Mo $K\alpha$ radiation
b = 9.140 (2) Å	$\mu = 0.30 \text{ mm}^{-1}$
c = 11.950 (3) Å	T = 173 K
$\alpha = 80.937 \ (9)^{\circ}$	$0.41 \times 0.21 \times 0.15 \text{ mm}$
$\beta = 75.365 \ (8)^{\circ}$	

Data collection

Rigaku Saturn724+ CCD
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
$T_{\min} = 0.702, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.108$ S = 1.103238 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3B\cdots O4^{i}$	0.99	2.51	3.420 (2)	153
C5−H5···O1 ⁱⁱ	1.00	2.59	3.386 (2)	136
$C7-H7\cdots O4^{i}$	1.00	2.51	3.468 (2)	160

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 51173188).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZP2004).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Guo, Y. Z., Liu, J. G. & Yang, S. Y. (2013). Acta Cryst. E69, o226.
- Guo, Y. Z., Shen, D. X., Ni, H. J., Liu, J. G. & Yang, S. Y. (2013). Prog. Org. Coat. 76, 768–777.
 Guo, Y. Z., Song, H. W. Zhai, L. Liu, J. G. & Yang, S. Y. (2012). Polymer, 1.44.
- Guo, Y. Z., Song, H. W., Zhai, L., Liu, J. G. & Yang, S. Y. (2012). *Polym. J.* 44, 718–723.
- Hall, H. K., Nogues, P., Rhoades, J. W., Sentman, R. C. & Detar, M. (1982). J. Org. Chem. 47, 1451–1455.
- Li, X. D., Zhong, Z. X., Han, S. H., Lee, S. H. & Lee, M. H. (2005). *Polym. Int.* **54**, 406–411.
- Liaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907–974.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

Zhang, A. Q., Li, X. D., Nah, C. W., Hwang, K. J. & Lee, M. H. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 22–29.

Zhong, Z. X., Li, X. D., Lee, S. H. & Lee, M. H. (2004). *Mol. Cryst. Liq. Cryst.* **425**, 145–152.

supporting information

Acta Cryst. (2013). E69, o1031–o1032 [https://doi.org/10.1107/S1600536813014943] 8-Chloromethyl-5-(2,5-dioxooxolan-3-yl)-3,3a,4,5-tetrahydro-1*H*-naphtho[1,2c]furan-1,3-dione

Y. Z. Guo, Y. Z. Song, J. G. Liu and S. Y. Yang

S1. Comment

Polyimide (PI) is an important class of high performance polymers in the current industry. Functional PI materials have been widely used in microelectronic, optoelectronic and advanced display areas (Liaw *et al.*, 2012). Chloromethyl is an important active species for functionalization of PI materials (Li *et al.*, 2005). For instance, PIs which are highly sensitive to ultraviolet lights of high-pressure mercury lamps have been successfully developed *via* the reaction of chloromethyl substituted in the PI molecules with photosensitive substances, such as cinnamic acid (Zhang *et al.*, 2003). In addition, chloromethyl-containing PIs exhibited good sensitivity to linearly polarized ultraviolet light, which making it possible using the PIs for the photoalignment fabrication of liquid crystal molecules in advanced liquid crystal display devices (Zhong *et al.*, 2004). In the current work, we reported a novel chloromethyl-containing alicyclic dianhydride monomer. The molecular structure of the title compound is shown in Fig. 1. The compound has an asymmetrical structure and the dihedral angle between the two anhydride rings is 79.96 (6)° while the dihedral angles between the benzene ring and the anhydride ring 1(C1—C2—C3—C4—O2) and anhydride ring 2 (C7—C8—C9—C10—O5) are 71.03 (5)° and 42.57 (7)°, respectively. The six-membered cyclohexene ring in the tetra-hydronaphthalene residue exhibits an envelope conformation with puckering parameters of Q = 0.4805 (17) Å, θ =57.46 (19)° and φ =58.9 (2)°. =122.8 (2)° and φ =300.7 (2)° (Cremer & Pople, 1975). There is an intramolecular C—H…Cl hydrogen bond in the molecule, while in the crystal, molecules are connected by week C—H…O intermolecular interactions, as shown in Table 1.

S2. Experimental

Into a 500 ml three-necked flask equipped with a mechanical stirrer, a nitric oxide inlet, and a condenser, 43.75 g(0.446 mol) of maleic anhydride, 104.09 g(0.682 mol) of 4-chloromethylstyrene, 0.1138 g(0.5 mmol) of 2,5-di-*tert*-butyl hydroquinone were added. The reaction mixture was heated to 120°C and maintained for 6 h under nitric oxide. The produced red-brown nitrogen oxide gas was trapped by passing through an aqueous solution of 20 wt% sodium hydroxide. White needle crystals were formed. After the reaction was completed, 60 ml of acetonitrile was added and the solution was refluxed for about 0.5 h. Then 60 ml of toluene was added and the reactino mixture was cooled to room temperature. The produced white needle crystals was collected by filtration and the solid was washed with toluene and petroleum ether in succession. After being dried in vacuum, the pure MCTDA was obtained as white crystals. Yield: 59.49 g(76.5%). Elemental analysis: calculated for $C_{17}H_{13}ClO_6:C,58.55$; H:3.76%. Found: C:58.71; H:3.85%. EI—MS, m/z:142(M^+ -176, 100%). Colourless single crystals were grown by slow evaporation of an acetonitrile solution over a period of several days.

S3. Refinement

All H atoms were positioned geometrically (C-H=0.95-1.00 Å) and refined using a riding model with the $U_{iso}(H)=1.2$ $U_{eq}C$ for both of the aromatic ring and aliphatic chain.

Figure 1

The molecular structure of the title compound, showing diaplacement ellipsoids at the 30% probability level.

8-Chloromethyl-5-(2,5-dioxooxolan-3-yl)-3,3a,4,5-tetrahydro-1H-naphtho[1,2-c]furan-1,3-dione

Crystal data

$C_{17}H_{13}ClO_6$	Z = 2
$M_r = 348.72$	F(000) = 360
Triclinic, $P\overline{1}$	$D_x = 1.626 \text{ Mg m}^{-3}$
Hall symbol: -p 1	Melting point: 502 K
a = 6.8988 (15) Å	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
b = 9.140 (2) Å	Cell parameters from 2542 reflections
c = 11.950 (3) Å	$\theta = 2.3-27.5^{\circ}$
$a = 80.937 (9)^{\circ}$	$\mu = 0.30 \text{ mm}^{-1}$
$\beta = 75.365 (8)^{\circ}$ $\gamma = 79.614 (8)^{\circ}$ $V = 712.1 (3) Å^{3}$ Data collection	T = 173 K Block, colourless $0.41 \times 0.21 \times 0.15$ mm
Rigaku Saturn724+ CCD	Absorption correction: multi-scan
diffractometer	(<i>CrystalClear</i> ; Rigaku, 2008)
Radiation source: sealed tube	$T_{min} = 0.702, T_{max} = 1.000$
Graphite monochromator	9192 measured reflections
ω scans at fixed $\chi = 45^{\circ}$	3238 independent reflections

$h = -8 \rightarrow 8$
$k = -11 \rightarrow 11$
$l = -15 \rightarrow 15$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 0.3488P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Cl1	1.05131 (7)	-0.07996 (5)	0.86631 (4)	0.03800 (15)
01	0.26974 (19)	0.57365 (14)	0.98000 (10)	0.0314 (3)
O2	0.50528 (18)	0.64807 (13)	0.82479 (10)	0.0277 (3)
O3	0.70203 (18)	0.68985 (14)	0.64654 (11)	0.0303 (3)
O4	-0.16049 (18)	0.33284 (13)	0.54844 (11)	0.0301 (3)
05	0.05290 (17)	0.11884 (12)	0.56476 (10)	0.0258 (3)
O6	0.31175 (19)	-0.05753 (13)	0.59407 (11)	0.0307 (3)
C1	0.3305 (2)	0.58452 (17)	0.87724 (14)	0.0236 (3)
C2	0.2441 (2)	0.53951 (17)	0.78490 (14)	0.0217 (3)
H2	0.1206	0.6131	0.7772	0.026*
C3	0.4071 (2)	0.56388 (18)	0.67298 (14)	0.0241 (3)
H3A	0.4742	0.4670	0.6448	0.029*
H3B	0.3475	0.6268	0.6112	0.029*
C4	0.5553 (2)	0.64167 (17)	0.70584 (14)	0.0229 (3)
C5	0.1782 (2)	0.38204 (17)	0.82204 (13)	0.0198 (3)
Н5	0.1048	0.3789	0.9058	0.024*
C6	0.0298 (2)	0.35351 (18)	0.75498 (14)	0.0228 (3)
H6A	-0.0792	0.4403	0.7555	0.027*
H6B	-0.0331	0.2643	0.7946	0.027*
C7	0.1347 (2)	0.32835 (17)	0.62825 (14)	0.0209 (3)
H7	0.1755	0.4237	0.5823	0.025*
C8	-0.0087 (2)	0.26947 (18)	0.57545 (14)	0.0235 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

С9	0.2381 (2)	0.07047 (18)	0.59505 (13)	0.0226 (3)
C10	0.3176 (2)	0.20368 (16)	0.61997 (13)	0.0194 (3)
H10	0.4219	0.2337	0.5491	0.023*
C11	0.4192 (2)	0.17137 (16)	0.72211 (13)	0.0183 (3)
C12	0.3571 (2)	0.25765 (16)	0.81480 (13)	0.0190 (3)
C13	0.4641 (2)	0.22721 (17)	0.90297 (13)	0.0222 (3)
H13	0.4250	0.2865	0.9658	0.027*
C14	0.6257 (2)	0.11244 (17)	0.90047 (14)	0.0237 (3)
H14	0.6960	0.0934	0.9614	0.028*
C15	0.6854 (2)	0.02504 (17)	0.80893 (14)	0.0213 (3)
C16	0.5840 (2)	0.05678 (17)	0.71949 (13)	0.0206 (3)
H16	0.6274	-0.0003	0.6554	0.025*
C17	0.8514 (2)	-0.10779 (18)	0.80455 (15)	0.0259 (3)
H17A	0.9082	-0.1267	0.7225	0.031*
H17B	0.7930	-0.1975	0.8474	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cl1	0.0321 (2)	0.0391 (3)	0.0504 (3)	0.00849 (18)	-0.0251 (2)	-0.0182 (2)
01	0.0324 (6)	0.0352 (7)	0.0283 (6)	-0.0042 (5)	-0.0050 (5)	-0.0130 (5)
O2	0.0287 (6)	0.0309 (6)	0.0285 (6)	-0.0087 (5)	-0.0100 (5)	-0.0079 (5)
03	0.0303 (6)	0.0306 (6)	0.0324 (7)	-0.0097(5)	-0.0082 (5)	-0.0032 (5)
O4	0.0269 (6)	0.0288 (6)	0.0394 (7)	-0.0020 (5)	-0.0181 (5)	-0.0038 (5)
05	0.0256 (6)	0.0227 (6)	0.0339 (6)	-0.0028(4)	-0.0137 (5)	-0.0070 (5)
O6	0.0334 (6)	0.0226 (6)	0.0396 (7)	0.0017 (5)	-0.0136 (5)	-0.0118 (5)
C1	0.0232 (7)	0.0202 (7)	0.0292 (8)	0.0000 (6)	-0.0082 (6)	-0.0084 (6)
C2	0.0205 (7)	0.0191 (7)	0.0277 (8)	0.0003 (6)	-0.0092 (6)	-0.0072 (6)
C3	0.0286 (8)	0.0213 (7)	0.0256 (8)	-0.0070 (6)	-0.0101 (6)	-0.0025 (6)
C4	0.0249 (8)	0.0184 (7)	0.0271 (8)	-0.0007 (6)	-0.0105 (6)	-0.0031 (6)
C5	0.0172 (7)	0.0202 (7)	0.0224 (7)	-0.0011 (5)	-0.0041 (6)	-0.0062 (6)
C6	0.0180 (7)	0.0226 (7)	0.0293 (8)	-0.0020 (6)	-0.0062 (6)	-0.0074 (6)
C7	0.0199 (7)	0.0183 (7)	0.0269 (8)	-0.0023 (5)	-0.0096 (6)	-0.0032 (6)
C8	0.0241 (8)	0.0225 (7)	0.0257 (8)	-0.0041 (6)	-0.0088 (6)	-0.0028 (6)
C9	0.0237 (7)	0.0238 (8)	0.0220 (7)	-0.0023 (6)	-0.0075 (6)	-0.0055 (6)
C10	0.0190 (7)	0.0198 (7)	0.0204 (7)	-0.0026 (5)	-0.0059 (5)	-0.0035 (6)
C11	0.0182 (7)	0.0174 (7)	0.0202 (7)	-0.0046 (5)	-0.0057 (5)	-0.0009 (5)
C12	0.0184 (7)	0.0177 (7)	0.0214 (7)	-0.0036 (5)	-0.0049 (5)	-0.0018 (5)
C13	0.0266 (8)	0.0203 (7)	0.0207 (7)	-0.0045 (6)	-0.0059 (6)	-0.0040 (6)
C14	0.0261 (8)	0.0223 (7)	0.0253 (8)	-0.0038 (6)	-0.0116 (6)	-0.0010 (6)
C15	0.0202 (7)	0.0183 (7)	0.0263 (8)	-0.0027 (5)	-0.0076 (6)	-0.0015 (6)
C16	0.0209 (7)	0.0191 (7)	0.0229 (7)	-0.0028 (6)	-0.0054 (6)	-0.0054 (6)
C17	0.0254 (8)	0.0209 (7)	0.0345 (9)	-0.0002 (6)	-0.0137 (7)	-0.0050 (6)

Geometric parameters (Å, °)

Cl1—C17	1.7920 (16)	С6—Н6А	0.9900
01—C1	1.187 (2)	С6—Н6В	0.9900

supporting information

O2—C4	1.384 (2)	C7—C8	1.510 (2)
O2—C1	1.393 (2)	C7—C10	1.535 (2)
O3—C4	1.192 (2)	С7—Н7	1.0000
O4—C8	1.1957 (19)	C9—C10	1.520 (2)
O5—C8	1.3818 (19)	C10—C11	1.520 (2)
O5—C9	1.3923 (19)	С10—Н10	1.0000
06	1.189 (2)	C11—C12	1.395 (2)
C1-C2	1 518 (2)	C11-C16	1.398(2)
$C^2 - C^3$	1 529 (2)	C12-C13	1.390(2) 1 399(2)
$C_2 = C_3$	1.527(2)	$C_{12} = C_{13}$	1.399(2) 1 384(2)
$C_2 = C_3$	1.0000	C_{12} U_{12}	1.364(2)
$C_2 = C_1$	1.0000	С13—П13	0.9300
$C_3 = U_2$	1.503 (2)		1.390 (2)
C3—H3A	0.9900		0.9500
C3—H3B	0.9900	C15—C16	1.386 (2)
C5—C12	1.515 (2)	C15—C17	1.509 (2)
C5—C6	1.528 (2)	C16—H16	0.9500
С5—Н5	1.0000	C17—H17A	0.9900
C6—C7	1.538 (2)	C17—H17B	0.9900
C4 02 C1	110.00 (12)		110 (
C4 - 02 - C1	110.80 (12)	C_{0} $H/$	110.6
05-09	110.//(12)	04-05	120.53 (14)
01	120.33 (14)	04	129.30 (15)
O1—C1—C2	129.76 (15)	O5—C8—C7	110.11 (13)
O2—C1—C2	109.90 (13)	O6—C9—O5	120.05 (15)
C1—C2—C3	103.52 (12)	O6—C9—C10	130.51 (15)
C1—C2—C5	110.96 (13)	O5—C9—C10	109.38 (13)
C3—C2—C5	118.62 (12)	C9—C10—C11	114.41 (12)
С1—С2—Н2	107.8	C9—C10—C7	103.68 (12)
С3—С2—Н2	107.8	C11—C10—C7	116.64 (12)
С5—С2—Н2	107.8	С9—С10—Н10	107.2
C4—C3—C2	105.08 (13)	C11—C10—H10	107.2
С4—С3—Н3А	110.7	C7—C10—H10	107.2
C2—C3—H3A	110.7	C12-C11-C16	119.82 (13)
C4-C3-H3B	110.7	C12 - C11 - C10	121.42(13)
$C_2 - C_3 - H_3B$	110.7	C16-C11-C10	121.12(13) 118.70(13)
$H_3 \Delta (C_3 H_3 B)$	108.8	C_{11} C_{12} C_{13}	118.55 (14)
$\Omega_{3}^{2} C_{4} \Omega_{2}^{2}$	100.0 120.22(14)	$C_{11} = C_{12} = C_{13}$	110.33(14) 121.75(13)
03 - C4 - 02	120.22(14) 120.78(15)	$C_{12} = C_{12} = C_{5}$	121.75(13) 110.70(13)
03 - C4 - C3	129.70(13) 100.05(12)	$C_{13} - C_{12} - C_{3}$	119.70(13)
02-04-03	109.93(13)	C14 - C13 - C12	121.30 (14)
	110.91 (12)		119.3
C12—C5—C2	112.48 (12)	С12—С13—Н13	119.3
C6—C5—C2	112.64 (13)	C13—C14—C15	120.07 (14)
С12—С5—Н5	106.8	C13—C14—H14	120.0
С6—С5—Н5	106.8	C15—C14—H14	120.0
С2—С5—Н5	106.8	C16—C15—C14	119.13 (14)
C5—C6—C7	111.94 (12)	C16—C15—C17	117.99 (14)
С5—С6—Н6А	109.2	C14—C15—C17	122.83 (14)
С7—С6—Н6А	109.2	C15—C16—C11	121.09 (14)

С5—С6—Н6В	109.2	C15—C16—H16	119.5
С7—С6—Н6В	109.2	C11—C16—H16	119.5
H6A—C6—H6B	107.9	C15—C17—Cl1	112.50 (11)
C8—C7—C10	103.64 (12)	C15—C17—H17A	109.1
C8—C7—C6	108.82 (13)	Cl1—C17—H17A	109.1
C10—C7—C6	112.36 (12)	C15—C17—H17B	109.1
С8—С7—Н7	110.6	Cl1—C17—H17B	109.1
С10—С7—Н7	110.6	H17A—C17—H17B	107.8
C4—O2—C1—O1	176.48 (15)	O6—C9—C10—C7	-170.26 (17)
C4—O2—C1—C2	-4.14 (16)	O5—C9—C10—C7	12.71 (16)
O1—C1—C2—C3	-172.78 (17)	C8—C7—C10—C9	-15.08 (15)
O2—C1—C2—C3	7.90 (16)	C6—C7—C10—C9	102.23 (14)
O1—C1—C2—C5	-44.5 (2)	C8—C7—C10—C11	-141.81 (13)
O2—C1—C2—C5	136.19 (13)	C6-C7-C10-C11	-24.50 (18)
C1—C2—C3—C4	-8.38 (15)	C9-C10-C11-C12	-125.35 (15)
C5—C2—C3—C4	-131.77 (13)	C7—C10—C11—C12	-4.1 (2)
C1—O2—C4—O3	-179.38 (14)	C9-C10-C11-C16	57.57 (18)
C1—O2—C4—C3	-1.65 (17)	C7—C10—C11—C16	178.79 (13)
C2—C3—C4—O3	-175.99 (16)	C16—C11—C12—C13	0.5 (2)
C2—C3—C4—O2	6.56 (17)	C10-C11-C12-C13	-176.56 (13)
C1-C2-C5-C12	-72.89 (16)	C16—C11—C12—C5	-179.44 (13)
C3—C2—C5—C12	46.72 (18)	C10-C11-C12-C5	3.5 (2)
C1—C2—C5—C6	160.87 (12)	C6—C5—C12—C11	25.70 (19)
C3—C2—C5—C6	-79.51 (16)	C2-C5-C12-C11	-101.46 (16)
C12—C5—C6—C7	-54.14 (17)	C6—C5—C12—C13	-154.22 (14)
C2—C5—C6—C7	72.94 (16)	C2-C5-C12-C13	78.62 (17)
C5—C6—C7—C8	168.26 (12)	C11—C12—C13—C14	-1.2 (2)
C5—C6—C7—C10	54.08 (17)	C5-C12-C13-C14	178.68 (14)
C9—O5—C8—O4	176.79 (15)	C12—C13—C14—C15	0.3 (2)
C9—O5—C8—C7	-5.78 (17)	C13—C14—C15—C16	1.5 (2)
C10—C7—C8—O4	-169.45 (17)	C13—C14—C15—C17	-176.01 (14)
C6—C7—C8—O4	70.8 (2)	C14—C15—C16—C11	-2.3 (2)
C10—C7—C8—O5	13.41 (16)	C17—C15—C16—C11	175.37 (14)
C6—C7—C8—O5	-106.35 (14)	C12—C11—C16—C15	1.3 (2)
C8—O5—C9—O6	177.93 (15)	C10-C11-C16-C15	178.39 (14)
C8—O5—C9—C10	-4.67 (17)	C16—C15—C17—Cl1	147.27 (13)
O6-C9-C10-C11	-42.1 (2)	C14—C15—C17—Cl1	-35.2 (2)
O5—C9—C10—C11	140.82 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C3—H3 <i>B</i> ···O4 ⁱ	0.99	2.51	3.420 (2)	153
C5—H5···O1 ⁱⁱ	1.00	2.59	3.386 (2)	136

C7—H7···O4ⁱ 1.00 2.51 3.468 (2) 160 C14—H14···Cl1 0.95 2.75 3.1045 (17) 103

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+2.