organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-2H-chromen-4-yl propionate

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Bio-organique et Phytochimie, Université de Ouagadougou 03 BP 7021 Ouagadougou 03, Burkina Faso, and cLaboratoire de Physique des Interactions Ioniques et Moléculaire, UMR–CNRS 7345, Equipe "Spectrometrie et Dynamique Moléculaire", Centre Saint Jérôme, Université Aix-Marseille, Case 542 Avenue Escadrille Normandie Niemen F-13397, Marseille Cedex 20, France
*Correspondence e-mail: bibilamayayabisseyou@yahoo.fr

(Received 7 June 2013; accepted 12 June 2013; online 19 June 2013)

In the title compound, C12H10O4, the atoms of the 2-oxo-2H-chromene ring system and the non-H atoms of the 4-substituent all lie on a crystallographic mirror plane. The mol­ecular structure exhibits an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, mol­ecules form R32(12) trimeric units via C—H⋯O inter­actions which propagate into layers parallel to the ac plane. These layers are linked by weak C—H⋯O inter­actions along the [010] direction, generating a three-dimensional network.

Related literature

For the biological activity of coumarin derivatives, see: Abernethy (1969[Abernethy, J. L. (1969). J. Chem. Educ. 46, 561-568.]); Wang et al. (2001[Wang, M., Wang, L., Li, Y. & Li, Q. (2001). Transition Met. Chem. 26, 307-310.]); Yu et al. (2003[Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K.-H. (2003). Med. Res. Rev. 23, 322-345.], 2007[Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108-132.]); Vukovic et al. (2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]). For industrial applications, see: O'Kennedy & Thornes (1997[O'Kennedy, R. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. Wiley & Sons, Chichester.]); Lakshmi et al. (1995[Lakshmi, G. S. P. B., Murthy, Y. L. N., Anjaneyulu, A. S. R. & Santhamma, C. (1995). Dyes and Pigments 29, pp. 211-225.]). For a related structure, see: Abou et al. (2012[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438-o3439.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For thermal motion of carbonyl group oxygen atoms, see: Braga & Koetzle (1988[Braga, D. & Koetzle, T. F. (1988). Acta Cryst. B44, 151-156.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10O4

  • Mr = 218.20

  • Orthorhombic, P n m a

  • a = 9.2834 (3) Å

  • b = 6.7081 (2) Å

  • c = 16.8068 (6) Å

  • V = 1046.63 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 8092 measured reflections

  • 1431 independent reflections

  • 1155 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.146

  • S = 1.06

  • 1431 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4 0.93 2.21 2.800 (3) 121
C6—H6⋯O2i 0.93 2.48 3.376 (3) 161
C8—H8⋯O2ii 0.93 2.71 3.394 (3) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The 2-Oxo-2H-chromene ring system derivatives commonly called coumarin derivatives attracted significant attention because of their interesting biological profile including anti-HIV (Yu et al., 2003; Yu et al., 2007), anti-coagulant (Abernethy, 1969), anti-oxidant (Vukovic et al., 2010), anti-tumor (Wang et al., 2001) properties.

They found applications in cosmetic and food industries (O'Kennedy & Thornes, 1997) and are also potential laser dyes (Lakshmi et al., 1995). Owing its versatile properties, coumarin ring system has become a hub nucleus in the developing of new molecules in organic, medicinal and material chemistry. We have synthesized novel coumarin derivatives substituted at position 4 in order to explore the new properties of this compound class. Herein, we report single-crystal structure of title compound.

The molecular structure of title compound (and its atomic numbering scheme) is illustrated in Fig. 1. As expected, the coumarin moiety is planar as shown in the recent X-ray diffraction analysis of 4-substituted coumarin derivative (Abou et al., 2012). Analysis of bond length values of aromatic ring indicate the existence of a delocalized π-electron cloud in this one. In this structure, except the H atoms of the substituent groups, all other atoms lie in a crystallographic mirror plane (x, y = 1/4, z). We also note the existence of an intramolecular C—H···O hydrogen bond which generates a S(6) ring motif (Bernstein et al., 1995).

In the three-dimensional crystal packing, molecules form cyclic trimers of R32 (12) motifs (Bernstein et al., 1995) via two independent intermolecular C—H···O hydrogen bond interactions along the a axis (Fig. 2). These trimolecular aggregates propagate into parallel layers to the ac plane (Fig. 3). These layers are additionally stabilized by weak intermolecular C—H···O interactions along [010] direction.

Related literature top

For a biological profile of coumarin derivatives, see: Abernethy (1969); Wang et al. (2001); Yu et al. (2003, 2007); Vukovic et al. (2010). For industrial applications, see: O'Kennedy & Thornes (1997); Lakshmi et al. (1995). For a related structure, see: Abou et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For thermal motion of carbonyl group oxygen atoms, see: Braga & Koetzle (1988).

Experimental top

To a solution of propionic chloride (125 mmol) in dried diethyl ether (300 ml) was added dried pyridine (4 ml) and 4-hydroxycoumarin (120 mmol) in small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from acetone. Colourless single crystals of the title compound were obtained in a good yield: 69.7%; m.p. 358–359 K.

Refinement top

The structure solution program SIR2004 (Burla et al., 2005) was used to solve the structure. The .res file shows that all non H atoms lie on special positions (x, 1/4, z) with a site-occupancy factor of 0.5. As the program SHEIXL97 (Sheldrick, 2008) will automatically work out and apply the appropriate positional, s.o.f. and Uij constraints for any special positions, we have not refined these non H atoms parameters with further constraints. However, omitted from the refinement because of bad disagreements were (7 0 4), (7 2 4), (4 1 1), (1 0 1), (0 0 2).

H atoms were placed in calculated positions [C—H = 0.93 (aromatic), 0.96 (methyl group) or 0.97 Å (methylene group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic and methylene group) or 1.5 (methyl group) times Ueq of the respective parent atom.

Structure description top

The 2-Oxo-2H-chromene ring system derivatives commonly called coumarin derivatives attracted significant attention because of their interesting biological profile including anti-HIV (Yu et al., 2003; Yu et al., 2007), anti-coagulant (Abernethy, 1969), anti-oxidant (Vukovic et al., 2010), anti-tumor (Wang et al., 2001) properties.

They found applications in cosmetic and food industries (O'Kennedy & Thornes, 1997) and are also potential laser dyes (Lakshmi et al., 1995). Owing its versatile properties, coumarin ring system has become a hub nucleus in the developing of new molecules in organic, medicinal and material chemistry. We have synthesized novel coumarin derivatives substituted at position 4 in order to explore the new properties of this compound class. Herein, we report single-crystal structure of title compound.

The molecular structure of title compound (and its atomic numbering scheme) is illustrated in Fig. 1. As expected, the coumarin moiety is planar as shown in the recent X-ray diffraction analysis of 4-substituted coumarin derivative (Abou et al., 2012). Analysis of bond length values of aromatic ring indicate the existence of a delocalized π-electron cloud in this one. In this structure, except the H atoms of the substituent groups, all other atoms lie in a crystallographic mirror plane (x, y = 1/4, z). We also note the existence of an intramolecular C—H···O hydrogen bond which generates a S(6) ring motif (Bernstein et al., 1995).

In the three-dimensional crystal packing, molecules form cyclic trimers of R32 (12) motifs (Bernstein et al., 1995) via two independent intermolecular C—H···O hydrogen bond interactions along the a axis (Fig. 2). These trimolecular aggregates propagate into parallel layers to the ac plane (Fig. 3). These layers are additionally stabilized by weak intermolecular C—H···O interactions along [010] direction.

For a biological profile of coumarin derivatives, see: Abernethy (1969); Wang et al. (2001); Yu et al. (2003, 2007); Vukovic et al. (2010). For industrial applications, see: O'Kennedy & Thornes (1997); Lakshmi et al. (1995). For a related structure, see: Abou et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For thermal motion of carbonyl group oxygen atoms, see: Braga & Koetzle (1988).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Dashed lines indicate a hydrogen bond.
[Figure 2] Fig. 2. Part ot the crystal packing of the title compound showing the formation of R32(12) cyclic trimers. Dashed lines indicate hydrogen bond contacts. H atoms not involved in hydrogen bond interactions have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed down the b axis, showing parallel layers in the ac plane. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bond interactions have been omitted for clarity.
2-Oxo-2H-chromen-4-yl propionic acid top
Crystal data top
C12H10O4Dx = 1.385 Mg m3
Mr = 218.20Melting point = 358–359 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8092 reflections
a = 9.2834 (3) Åθ = 3.3–29.0°
b = 6.7081 (2) ŵ = 0.11 mm1
c = 16.8068 (6) ÅT = 298 K
V = 1046.63 (6) Å3Parallelepiped, colourless
Z = 40.40 × 0.40 × 0.20 mm
F(000) = 456
Data collection top
Nonius KappaCCD
diffractometer
1155 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 29.0°, θmin = 3.3°
φ and ω scansh = 1212
8092 measured reflectionsk = 88
1431 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.3235P]
where P = (Fo2 + 2Fc2)/3
1431 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
88 constraints
Crystal data top
C12H10O4V = 1046.63 (6) Å3
Mr = 218.20Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.2834 (3) ŵ = 0.11 mm1
b = 6.7081 (2) ÅT = 298 K
c = 16.8068 (6) Å0.40 × 0.40 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1155 reflections with I > 2σ(I)
8092 measured reflectionsRint = 0.037
1431 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
1431 reflectionsΔρmin = 0.16 e Å3
98 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The DENZO image processing package used during process data may have problems with certain strong reflections. These reflections are often excluded from the data set to result in _diffrn_measured_fraction_theta_full Low (0.974 in our nvestigation study). However, it presents no problem in the refinement since the data-to-parameter ratio is superior to 10.

In the initial refinement, extinction correction (EXTI) has been applied because SHELXL has suggested it; but in the last cycles of the refinement, the EXTI instruction has been removed because of PLATON checkCIF reports mentioning extinction parameter within range (2.20 σ).

The non H atoms lie in the miror plane at y = 1/4. Therefore the Uij constraints (U12 = U23 = 0) generated automatically by SHELXL for this special positions (x, 1/4, z) in the space group Pnma is responsible for the elongated thermal ellipsoids in the [010] direction causing a large U3/U1 ratio for the average U(i,j) tensor (2.4).

The low Ueq as compared to neighbors for atom C10 may be caused by the carbonyl bond in which the oxygen atom vibrates more than the carbon atom (Braga & Koetzle, 1988). Moreover, the decrease of Ueq from C12 to C10 of the propanoate substituent originates from the minor unresolved disordered H atoms bonded to the non disordered carbon atom C12 (split H atoms) revealed by manual inspection of PLATON (Spek, 2009) may partly justify this low Ueq of C10.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.06438 (15)0.25000.59531 (8)0.0595 (5)
O10.01804 (18)0.25000.35401 (8)0.0607 (5)
C40.1469 (2)0.25000.46462 (11)0.0434 (4)
C30.0233 (2)0.25000.51696 (10)0.0428 (4)
C20.1113 (2)0.25000.48839 (12)0.0481 (5)
H20.18900.25000.52330.058*
C100.0290 (2)0.25000.65979 (11)0.0460 (5)
C50.1204 (2)0.25000.38352 (12)0.0461 (5)
O40.15508 (17)0.25000.65323 (9)0.0695 (5)
C110.0580 (2)0.25000.73405 (11)0.0616 (7)
H11A0.11970.36680.73430.074*0.50
H11B0.11970.13320.73430.074*0.50
C90.2892 (2)0.25000.49029 (13)0.0633 (7)
H90.30960.25000.54450.076*
O20.25262 (19)0.25000.37225 (11)0.0921 (8)
C10.1362 (2)0.25000.40383 (13)0.0579 (6)
C80.4004 (3)0.25000.43576 (16)0.0765 (9)
H80.49540.25000.45320.092*
C120.0325 (3)0.25000.80905 (13)0.0723 (8)
H12A0.09960.14120.80720.108*0.50
H12B0.08420.37350.81290.108*0.50
H12C0.02900.23520.85460.108*0.50
C60.2310 (3)0.25000.32839 (13)0.0603 (6)
H60.21110.25000.27420.072*
C70.3703 (3)0.25000.35516 (15)0.0687 (7)
H70.44570.25000.31870.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0399 (8)0.1082 (14)0.0304 (7)0.0000.0025 (5)0.000
O10.0549 (9)0.0936 (12)0.0336 (7)0.0000.0011 (6)0.000
C40.0423 (10)0.0528 (11)0.0351 (9)0.0000.0050 (7)0.000
C30.0420 (10)0.0554 (11)0.0311 (8)0.0000.0007 (7)0.000
C20.0401 (10)0.0665 (13)0.0376 (9)0.0000.0013 (7)0.000
C100.0409 (10)0.0616 (12)0.0354 (9)0.0000.0062 (7)0.000
C50.0485 (11)0.0532 (11)0.0368 (9)0.0000.0036 (8)0.000
O40.0419 (8)0.1227 (16)0.0439 (8)0.0000.0053 (6)0.000
C110.0468 (12)0.1050 (19)0.0331 (10)0.0000.0013 (8)0.000
C90.0432 (11)0.104 (2)0.0432 (10)0.0000.0039 (9)0.000
O20.0540 (10)0.173 (2)0.0496 (9)0.0000.0147 (8)0.000
C10.0493 (12)0.0841 (16)0.0402 (10)0.0000.0031 (9)0.000
C80.0440 (12)0.126 (3)0.0589 (15)0.0000.0111 (10)0.000
C120.0577 (14)0.123 (2)0.0363 (10)0.0000.0053 (9)0.000
C60.0654 (14)0.0757 (16)0.0397 (10)0.0000.0133 (10)0.000
C70.0603 (14)0.0908 (18)0.0550 (13)0.0000.0232 (11)0.000
Geometric parameters (Å, º) top
O3—C31.371 (2)C11—H11A0.9700
O3—C101.388 (2)C11—H11B0.9700
O1—C51.378 (3)C9—C81.380 (3)
O1—C11.380 (3)C9—H90.9300
C4—C51.385 (3)O2—C11.204 (3)
C4—C91.390 (3)C8—C71.383 (4)
C4—C31.446 (3)C8—H80.9300
C3—C21.339 (3)C12—H12A0.9600
C2—C11.440 (3)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C10—O41.176 (3)C6—C71.370 (4)
C10—C111.487 (3)C6—H60.9300
C5—C61.383 (3)C7—H70.9300
C11—C121.515 (3)
C3—O3—C10125.20 (15)C12—C11—H11A108.9
C5—O1—C1121.52 (16)C10—C11—H11B108.9
C5—C4—C9118.32 (18)C12—C11—H11B108.9
C5—C4—C3117.24 (17)H11A—C11—H11B107.7
C9—C4—C3124.44 (18)C8—C9—C4120.3 (2)
C2—C3—O3127.17 (17)C8—C9—H9119.9
C2—C3—C4121.50 (17)C4—C9—H9119.9
O3—C3—C4111.33 (16)O2—C1—O1116.48 (19)
C3—C2—C1120.26 (18)O2—C1—C2125.4 (2)
C3—C2—H2119.9O1—C1—C2118.13 (18)
C1—C2—H2119.9C9—C8—C7120.0 (2)
O4—C10—O3123.27 (18)C9—C8—H8120.0
O4—C10—C11128.30 (18)C7—C8—H8120.0
O3—C10—C11108.43 (16)C7—C6—C5118.8 (2)
O1—C5—C6116.82 (19)C7—C6—H6120.6
O1—C5—C4121.34 (18)C5—C6—H6120.6
C6—C5—C4121.8 (2)C6—C7—C8120.8 (2)
C10—C11—C12113.39 (19)C6—C7—H7119.6
C10—C11—H11A108.9C8—C7—H7119.6
C10—O3—C3—C20.0C3—C4—C5—C6180.0
C10—O3—C3—C4180.0O4—C10—C11—C120.0
C5—C4—C3—C20.0O3—C10—C11—C12180.0
C9—C4—C3—C2180.0C5—C4—C9—C80.0
C5—C4—C3—O3180.0C3—C4—C9—C8180.0
C9—C4—C3—O30.0C5—O1—C1—O2180.0
O3—C3—C2—C1180.0C5—O1—C1—C20.0
C4—C3—C2—C10.0C3—C2—C1—O2180.0
C3—O3—C10—O40.0C3—C2—C1—O10.0
C3—O3—C10—C11180.0C4—C9—C8—C70.0
C1—O1—C5—C6180.0O1—C5—C6—C7180.0
C1—O1—C5—C40.0C4—C5—C6—C70.0
C9—C4—C5—O1180.0C5—C6—C7—C80.0
C3—C4—C5—O10.0C9—C8—C7—C60.0
C9—C4—C5—C60.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.932.212.800 (3)121
C6—H6···O2i0.932.483.376 (3)161
C8—H8···O2ii0.932.713.394 (3)131
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10O4
Mr218.20
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)9.2834 (3), 6.7081 (2), 16.8068 (6)
V3)1046.63 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8092, 1431, 1155
Rint0.037
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.06
No. of reflections1431
No. of parameters98
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.932.212.800 (3)120.9
C6—H6···O2i0.932.483.376 (3)160.8
C8—H8···O2ii0.932.713.394 (3)131.4
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Laboratoire de Physique des Inter­actions Ioniques et Moléculaires and the Spectropôle of Aix-Marseille Université (France) for the use of their diffractometer.

References

First citationAbernethy, J. L. (1969). J. Chem. Educ. 46, 561–568.  CrossRef CAS Google Scholar
First citationAbou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D. & Koetzle, T. F. (1988). Acta Cryst. B44, 151–156.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLakshmi, G. S. P. B., Murthy, Y. L. N., Anjaneyulu, A. S. R. & Santhamma, C. (1995). Dyes and Pigments 29, pp. 211–225.  CrossRef CAS Web of Science Google Scholar
First citationO'Kennedy, R. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. Wiley & Sons, Chichester.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, M., Wang, L., Li, Y. & Li, Q. (2001). Transition Met. Chem. 26, 307–310.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K.-H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds