Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[di- μ_{3}-bromido-bis[(1-ethyl$1 H$-imidazole- κN^{3})disilver(I)]]

Zhiguo Wang,* Qingquan Bian and Ying Guo

Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, People's Republic of China
Correspondence e-mail: wangzhiguo224865@163.com

Received 20 May 2013; accepted 18 June 2013

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \mathrm{~A}$; R factor $=0.019 ; w R$ factor $=0.048$; data-to-parameter ratio $=16.4$.

The asymmetric unit of the title coordination complex, $\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, comprises a monodentate 1-ethylimidazole ligand, an Ag^{+}cation and a μ_{3}-bridging Br^{-}anion, giving a distorted tetrahedral AgNBr_{3} stereochemistry about the Ag^{+} cation $[\mathrm{Ag}-\mathrm{N}=2.247$ (2) \AA and $\mathrm{Ag}-\mathrm{Br}=2.7372$ (4)2.7523 (4) A]. Two bridging bromide anions generate the dimeric $\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\right]$ repeat unit $[\mathrm{Ag} \cdots \mathrm{Ag}=$ 3.0028 (5) A], while a third Br^{-}anion links the units through corner sharing in an inversion-related $\mathrm{Ag}_{2} \mathrm{Br}_{2}$ association [Ag..Ag $=3.0407(4) \AA$], generating a one-dimensional ribbon step-polymer structure, extending along the c axis.

Related literature

For general background to N-heterocyclic carbenes, see: Arnold (2002); Lin \& Vasam (2004). For related structures, see: Wang \& Lin (1998); Liu et al. (2003); Helgesson \& Jagner (1990, 1991); Chen \& Liu (2003).

Experimental

Crystal data
$\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=567.80$
Monoclinic, $C 2 / \mathrm{c}$
$a=15.2489$ (15) \AA
$b=13.9888$ (13) A
$c=7.7198$ (7) A
$\beta=109.809$ (1) ${ }^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.355, T_{\text {max }}=0.392$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.05$
1362 reflections

$$
\begin{aligned}
& V=1549.3(3) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=7.67 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& 0.17 \times 0.16 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

3840 measured reflections 1362 independent reflections 1315 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

83 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.38 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{\AA^{-3}}$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Quality Engineering of Higher Education in Chemical Specialty Construction from Sichuan Province (Sc-mnu1111; Sc-mnu1115; Mnu-JY1104) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2262).

References

Arnold, P. L. (2002). Heteroat. Chem. 13, 534-539.
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, W. Z. \& Liu, F. H. (2003). J. Organomet. Chem. 673, 5-12.
Helgesson, G. \& Jagner, S. (1990). J. Chem. Soc. Dalton Trans. pp. 2414-2420.
Helgesson, G. \& Jagner, S. (1991). Inorg. Chem. 30, 2514-2571.
Lin, I. J. B. \& Vasam, C. S. (2004). Comments Inorg. Chem. 25, 75-129.
Liu, Q.-X., Xu, F.-B., Li, Q.-S., Zeng, X.-S., Leng, X.-B., Chou, Y.-L. \& Zhang, Z.-Z. (2003). Organometallics, 22, 309-314.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, H. M. J. \& Lin, I. J. B. (1998). Organometallics, 17, 972-975.

supporting information

Acta Cryst. (2013). E69, m411 [https://doi.org/10.1107/S1600536813016875]

catena-Poly[di- μ_{3}-bromido-bis[(1-ethyl-1 H-imidazole- $\kappa \mathrm{N}^{3}$)disilver(I)]]

Zhiguo Wang, Qingquan Bian and Ying Guo

S1. Comment

Silver and other transition metal N-heterocyclic carbene complexes have played an important role in development of metal-carbene systems for transmetalation reactions. Recent reviews dealing with silver N-heterocyclic carbenes were published by Arnold (2002) and Lin \& Vasam (2004). The products differ depending upon reaction conditions and the imidazolium salt used. Deprotonation by use of $\mathrm{Ag}_{2} \mathrm{O}$ has been the most widely used method in the syntheses of N heterocyclic carbene complexes of silver. The procedure can be accomplished using the reaction of $\mathrm{Ag}_{2} \mathrm{O}$ with the imidazolium salt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The 3-diethylbenzole N -heterocyclic carbene complexes of silver have been successfully synthesized by the reaction of the 1,3-diethylbenzolium salt with $\mathrm{Ag}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Wang \& Lin, 1998). In an attempt to prepare similar N-heterocyclic carbene complexes of silver by the reaction of $\mathrm{Ag}_{2} \mathrm{O}$ with 1,2-dibromocyclohexane and 1-ethylimidazole in DMSO solution, we obtained the title compound, $\left[\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}\right)_{2} \mathrm{Ag}_{2} \mathrm{Br}_{2}\right]_{\mathrm{n}}$, instead and the synthesis and crystal structure are reported herein. Although the stair polymers of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4} \mathrm{Ag}_{4} \mathrm{I}_{4}\right]_{\mathrm{n}}($ Liu et al., 2003) and 1-allyl-3-methylimidazole carbine silver iodide (Chen \& Liu, 2003) have recently been reported, their structural features are different from that of the title complex being formed through triple and quadruple halide bridges with $\mathrm{Ag} \cdots \mathrm{Ag}$ interactions.
In the title complex the asymmetric unit comprises one monodentate 1-ethylimidazole ligand, an Ag^{+}cation and a doubly bridging Br^{-}anion, giving a distorted tetrahedral AgNBr_{3} stereochemistry about silver $[\mathrm{Ag}-\mathrm{N}, 2.247(2) \AA \AA ; \mathrm{Ag}-$ $\mathrm{Br}, 2.7372$ (4)-2.7752 (3) \AA and bond angle range about Ag of 106.78 (6)-113.55 (5) ${ }^{\circ}$] (Fig. 1). These $\mathrm{Ag} — \mathrm{Br}$ bond distances are considerably longer than those found in the $\left[\mathrm{Ag}_{2} \mathrm{Br}_{4}\right]^{2-}$ complex anion [2.518 (2) \AA] (Helgesson \& Jagner, 1990). The Ag1—N1 bond [2.247 (2) \AA] is somewhat shorter than $2.335 \AA$ found in the pyridine silver iodide polymer $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4} \mathrm{Ag}_{4} \mathrm{I}_{4}\right]_{\mathrm{n}}$ (Liu et al., 2003). The dimeric $\mathrm{Ag}_{2} \mathrm{Br}_{2}$ repeating core unit in the title complex is generated through a double Br bridge, giving an $\mathrm{Ag} \cdots \mathrm{Ag}^{\mathrm{i}}$ separation of $3.0028(\mathrm{r}) \AA$ [for symmetry code (i): $-x+1, y,-z$) $+1 / 2$]. The fourmembered core ring so formed is very similar to that in the complex anion $\left[\mathrm{Ag}_{4} \mathrm{Br}_{8}\right]^{4-}$ (Helgesson \& Jagner, 1991).
The basic coomplex is extended into a one-dimensional step-polymer ribbon structure through centrosymmetric $\mathrm{Ag}-\mathrm{Br}$ and $\mathrm{Br}-\mathrm{Ag}$ bonds along the c axial direction (Fig. 2). Within these cyclic $\mathrm{Ag}_{2} \mathrm{Br}_{2}$ linkages, the $\mathrm{Ag} \cdots \mathrm{Ag}^{\text {iii }}$ separation is 3.0407 (4) \AA [for symmetry code (iii): $-x+1,-y+1,-z$].

S2. Experimental

1,2-Dibromocyclohexane ($2.42 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a solution of 1-ethylimidazole ($1.92 \mathrm{~g}, 20 \mathrm{mmol}$) in DMSO $(100 \mathrm{ml})$ at room temperature and stirred for 2 h , after which $\mathrm{Ag}_{2} \mathrm{O}(2.32 \mathrm{~g}, 10 \mathrm{mmol})$ was added and the mixture was refluxed for 3 h with stirring. The volume of the solution was reduced to 50 ml under vacuum, the residue was removed by filtration and the filtrate was kept at room temperature for a few days. Colorless crystals of the title compound were obtained after slow evaporation ($1.74 \mathrm{~g}, 30 \%$ yield). (mp: 335 K). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 9.42(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.84$ (s, $1 H, \mathrm{CH}$), 4.54(s, $2 H, \mathrm{CH}_{2}$), $3.65\left(\mathrm{~s}, 3 H, \mathrm{CH}_{3}\right)$ p.p.m. Anal. calcd.: C, 21.12; H, 2.82; N, 9.86\%; found: C, $21.05 ; \mathrm{H}$,
2.76; N, 9.75\%.

S3. Refinement

The H atoms attached to C atoms of the imidazole ring were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Methylene and methyl H atoms were likewise positioned geometrically $\left(\mathrm{C}-\mathrm{H}=0.99\right.$ and $0.98 \AA$, respectively) and also refined as riding atoms, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$

Figure 1
The atom numbering scheme for the contents of the asymmetric unit in the title complex. Displacement ellipsoids are drawn at the 30% probability level. For symmetry codes: (i) $-x+1, y,-z$) $-1 / 2]$; (ii) $x,-y, z)+1 / 2$.

Figure 2
The step-polymeric structure of the title complex, extending along the c axial direction.

$$
\text { catena-Poly[di- } \left.\mu_{3} \text {-bromido-bis[(1-ethyl-1H-imidazole- } \kappa N^{3}\right) \text { disilver(I)] }
$$

Crystal data

$\left[\mathrm{Ag}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=567.80$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=15.2489$ (15) \AA
$b=13.9888$ (13) \AA
$c=7.7198$ (7) \AA
$\beta=109.809(1)^{\circ}$
$V=1549.3(3) \AA^{3}$
$Z=4$
$F(000)=1072$
$D_{\mathrm{x}}=2.434 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 335 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3344 reflections
$\theta=2.8-28.4^{\circ}$
$\mu=7.67 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.355, T_{\text {max }}=0.392$

Block, colourless
$0.17 \times 0.16 \times 0.15 \mathrm{~mm}$

3840 measured reflections
1362 independent reflections
1315 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-16 \rightarrow 18$
$k=-16 \rightarrow 14$
$l=-6 \rightarrow 9$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.025 P)^{2}+1.7996 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.68$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ag1	$0.445475(14)$	$0.080848(14)$	$-0.12049(3)$	$0.02369(10)$
Br1	$0.363999(18)$	$0.066857(18)$	$-0.49464(4)$	$0.01975(10)$
N1	$0.39450(15)$	$0.21798(15)$	$-0.0362(3)$	$0.0183(5)$
N2	$0.34342(14)$	$0.31681(15)$	$0.1304(3)$	$0.0204(5)$
C1	$0.38660(17)$	$0.23374(18)$	$0.1262(4)$	$0.0182(5)$
H1	0.4088	0.1914	0.2280	0.022^{*}
C2	$0.32148(18)$	$0.35730(18)$	$-0.0411(4)$	$0.0236(6)$
H2	0.2903	0.4163	-0.0808	0.028^{*}
C3	$0.35336(18)$	$0.29593(19)$	$-0.1426(4)$	$0.0216(6)$
H3	0.3482	0.3052	-0.2676	0.026^{*}
C4	$0.3277(2)$	$0.3578(2)$	$0.2924(4)$	$0.0307(7)$
H4A	0.3101	0.3061	0.3618	0.037^{*}
H4B	0.2751	0.4036	0.2514	0.037^{*}
C5	$0.4122(2)$	$0.4081(2)$	$0.4169(4)$	$0.0295(7)$

H5A	0.4648	0.3635	0.4555	0.044^{*}
H5B	0.3996	0.4318	0.5256	0.044^{*}
H5C	0.4275	0.4620	0.3512	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag 1	$0.02308(14)$	$0.02533(14)$	$0.02428(15)$	$0.00355(7)$	$0.01013(10)$	$-0.00298(8)$
Br 1	$0.01675(15)$	$0.02566(16)$	$0.01700(17)$	$0.00117(9)$	$0.00595(12)$	$0.00022(10)$
N 1	$0.0171(11)$	$0.0193(10)$	$0.0203(12)$	$-0.0016(9)$	$0.0089(9)$	$-0.0010(9)$
N 2	$0.0145(10)$	$0.0223(11)$	$0.0242(12)$	$-0.0017(9)$	$0.0064(9)$	$-0.0064(9)$
C 1	$0.0148(12)$	$0.0213(13)$	$0.0179(13)$	$-0.0015(10)$	$0.0046(10)$	$-0.0001(10)$
C2	$0.0193(13)$	$0.0171(13)$	$0.0312(15)$	$-0.0016(10)$	$0.0043(11)$	$0.0014(11)$
C3	$0.0201(13)$	$0.0219(13)$	$0.0215(14)$	$-0.0036(10)$	$0.0053(11)$	$0.0047(11)$
C4	$0.0247(15)$	$0.0373(17)$	$0.0332(17)$	$-0.0033(12)$	$0.0138(13)$	$-0.0189(13)$
C5	$0.0228(15)$	$0.0343(15)$	$0.0287(17)$	$0.0016(12)$	$0.0050(13)$	$-0.0108(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

Ag1-N1	2.247 (2)	N2-C4	1.467 (3)
Ag1-Br1	2.7372 (4)	C1-H1	0.9500
$\mathrm{Ag} 1-\mathrm{Br} 1^{\mathrm{i}}$	2.7420 (4)	C2-C3	1.358 (4)
$\mathrm{Ag} 1-\mathrm{Br} 1^{\text {ii }}$	2.7523 (4)	C2-H2	0.9500
$\mathrm{Ag} 1-\mathrm{Ag} 1^{1}$	3.0028 (5)	C3-H3	0.9500
Ag1—Ag1 ${ }^{\text {iii }}$	3.0407 (4)	C4-C5	1.497 (4)
$\mathrm{Br} 1-\mathrm{Ag} 1^{\mathrm{i}}$	2.7420 (4)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{Br} 1-\mathrm{Ag} 1^{\text {iv }}$	2.7522 (4)	C4-H4B	0.9900
N1-C1	1.318 (3)	C5-H5A	0.9800
N1-C3	1.381 (3)	C5-H5B	0.9800
N2-C1	1.342 (3)	C5-H5C	0.9800
N2-C2	1.374 (4)		
N1—Ag1-Br1	106.78 (6)	C2-N2-C4	127.2 (2)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Br} 1^{\text {i }}$	113.55 (5)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	111.8 (2)
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Br}^{1}{ }^{\text {i }}$	112.899 (9)	N1-C1-H1	124.1
N1—Ag1- $\mathrm{Br}_{1}{ }^{\text {ii }}$	107.26 (5)	N2- $\mathrm{C} 1-\mathrm{H} 1$	124.1
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Br} 1^{\mathrm{ii}}$	102.771 (10)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	106.1 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 1^{\text {ii }}$	112.797 (10)	C3-C2-H2	126.9
N1—Ag1-Ag1 ${ }^{\text {i }}$	121.11 (5)	N2-C2-H2	126.9
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {i }}$	56.845 (11)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	109.6 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{1}$	56.690 (10)	C2-C3-H3	125.2
$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{1}$	130.781 (8)	N1-C3-H3	125.2
N1—Ag1-Ag1 ${ }^{\text {iii }}$	128.97 (6)	N2-C4-C5	112.2 (2)
Br1—Ag1—Ag1ii	123.435 (12)	N2-C4-H4A	109.2
$\mathrm{Br} 1^{\mathrm{i}}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {iii }}$	56.559 (9)	C5-C4-H4A	109.2
$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {iii }}$	56.238 (11)	N2-C4-H4B	109.2
Ag1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1 — \mathrm{Ag} 1{ }^{\text {iii }}$	95.508 (11)	C5-C4-H4B	109.2
$\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{1}$	66.464 (9)	H4A-C4-H4B	107.9

$\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\text {iv }}$	109.172 (11)	C4-C5-H5A	109.5
$\mathrm{Ag} 1{ }^{\mathrm{i}}$ - $\mathrm{Br} 1-\mathrm{Ag} 1^{\text {iv }}$	67.204 (10)	C4-C5-H5B	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	105.3 (2)	H5A-C5-H5B	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1$	124.76 (17)	C4-C5-H5C	109.5
C3-N1-Ag1	129.32 (18)	H5A-C5-H5C	109.5
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	107.1 (2)	H5B-C5-H5C	109.5
C1-N2-C4	125.6 (2)		
N1—Ag1-Br1—Ag1 ${ }^{\text {i }}$	116.60 (6)	Br1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 3$	107.5 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\mathrm{i}}$	-8.881 (15)	$\mathrm{Br} 1{ }^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 3$	-127.1 (2)
$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\mathrm{i}}$	-130.686 (9)	Ag1- $\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 3$	43.4 (2)
$\mathrm{Ag} 1^{\text {iiii- }} \mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\mathrm{i}}$	-72.907 (15)	$\mathrm{Ag} 1 \mathrm{iii}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 3$	172.66 (18)
N1—Ag1-Br1—Ag1 ${ }^{\text {iv }}$	169.81 (6)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-0.2 (3)
$\mathrm{Br} 1^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1{ }^{\text {iv }}$	44.330 (16)	$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-172.05 (16)
$\mathrm{Br}^{1 i}{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1{ }^{\text {iv }}$	-77.474 (18)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	0.3 (3)
$\mathrm{Ag} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1^{\mathrm{iv}}$	53.212 (9)	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	-176.8(2)
$\mathrm{Ag} 1{ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{Br} 1-\mathrm{Ag} 1{ }^{\text {iv }}$	-19.696 (19)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	-0.3 (3)
$\mathrm{Br} 1-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	152.24 (18)	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	176.8 (2)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	-82.7 (2)	N2-C2-C3-N1	0.1 (3)
$\mathrm{Br} 1 \mathrm{ii}-\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1$	42.6 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	0.0 (3)
Ag1 - Agl-N1-C1	-146.79 (17)	Ag1-N1-C3-C2	171.36 (17)
Ag1ii- $\mathrm{ig} 1-\mathrm{N} 1-\mathrm{C} 1$	-17.6 (2)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	80.9 (3)
Br1—Ag1-N1-C3	-17.5 (2)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	-95.7 (3)

[^0]
[^0]: Symmetry codes: (i) $-x+1, y,-z-1 / 2$; (ii) $x,-y, z+1 / 2$; (iii) $-x+1,-y,-z$; (iv) $x,-y, z-1 / 2$.

