

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-1-(5-Bromo-2-hydroxyphenyl)-1-oxopropan-2-yl morpholine-4-carbodithioate

Laura G. Sarbu,^a Cristian G. Hrib^b and Lucian M. Birsa^a*

^aDepartment of Chemistry, "Al. I. Cuza" University Iasi, 11 Carol I Bvd, Iasi 700506, Romania, and ^bChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany Correspondence e-mail: lbirsa@uaic.ro

Received 6 June 2013; accepted 25 June 2013

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.102; data-to-parameter ratio = 21.8.

In the racemic title compound, C₁₄H₁₆BrNO₃S₂, synthesized from the corresponding ω -bromopropiophenone, the dihedral angle between the plane of the phenol group and that of the planar section [maximum deviation = 0.040(2) Å] of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. A strong intramolecular phenol $O-H \cdots O$ hydrogen bond if present in the molecule. In the crystal, only weak $C-H \cdot \cdot \cdot S$ and C- $H \cdots O$ interactions are found.

Related literature

For the synthesis and applications of dithiocarbamates, see: Buu-Hoi & Lavit (1955); WHO (1998). For applications of 1,3dithiolium salts, see: Narita & Pittman (1976); Birsa & Asaftei (2008). For the structure of a related morpholine-4-carbodithioate, see: Bahrin et al. (2012).

V = 1580.6 (5) Å³

Mo $K\alpha$ radiation

 $0.54 \times 0.48 \times 0.30 \text{ mm}$

17019 measured reflections

4246 independent reflections

3807 reflections with $I > 2\sigma(I)$

 $\mu = 2.87 \text{ mm}^-$

T = 153 K

 $R_{\rm int} = 0.072$

Z = 4

Experimental

Crystal data

C ₁₄ H ₁₆ BrNO ₃ S ₂	
$M_r = 390.31$	
Monoclinic, $P2_1/c$	
a = 11.182 (2) Å	
b = 19.660 (4) Å	
c = 7.4593 (15) Å	
$\beta = 105.44 \ (3)^{\circ}$	

Data collection

Stoe IPDS 2T area-detector

diffractometer Absorption correction: for a sphere [modification of the interpolation procedure of Dwiggins (1975)] $T_{\min} = 0.114, \ T_{\max} = 0.140$

Refinement

н	atoms treated by a mixture of
	independent and constrained

refinement	
$\Delta \rho_{\rm max} = 0.71 \ {\rm e}$	$Å^{-3}$
$\Delta \rho_{\rm min} = -0.78$	e Å-

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H1···O2	0.76 (4)	1.86 (4)	2.558 (3)	151 (5)
$C4-H4\cdot\cdot\cdot S2^{i}$	0.95	2.79	3.712 (3)	164
C3-H3···O3 ⁱⁱ	0.95	2.51	3.443 (4)	168
$C12-H12B\cdots O1^{iii}$	0.99	2.46	3.454 (4)	178
Symmetry codes:	(i) $x, -y + x$	$\frac{1}{2}, z + \frac{1}{2};$ (ii)	$-x + 1, y - \frac{1}{2},$	$-z - \frac{1}{2};$ (iii)

(i) $x, -y + \frac{1}{2}, z + \frac{1}{2};$ (11) -x + 1, -y + 1, -z - 1.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Part of this work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, project No. 51/2012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2265).

References

Bahrin, L. G., Jones, P. G. & Hopf, H. (2012). Beilstein J. Org. Chem. 8, 1999-2003.

Birsa, M. L. & Asaftei, I. V. (2008). Monatsh. Chem. 139, 1433-1438.

Buu-Hoi, Ng. Ph. & Lavit, D. (1955). J. Chem. Soc., pp. 18-20.

Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.

Narita, M. & Pittman, C. U. Jr (1976). Synthesis, pp. 489-514.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. WHO (1998). http://www.inchem.org/documents/ehc/ehc/ehc78.htm.

supporting information

Acta Cryst. (2013). E69, o1169 [https://doi.org/10.1107/S1600536813017509]

rac-1-(5-Bromo-2-hydroxyphenyl)-1-oxopropan-2-yl morpholine-4-carbodithio-ate

Laura G. Sarbu, Cristian G. Hrib and Lucian M. Birsa

S1. Comment

Dithiocarbamates have important uses as chemical precursors, effluent additives, agricultural pesticides, and in experimental and clinical medicine (WHO, 1998). In particular, phenacyldithiocarbamates are important precursors of 1,3-dithiolium salts (Birsa & Asaftei, 2008), which in turn are well known precursors of tetrathiafulvalenes (Narita & Pittman, 1976). The racemic title compound $C_{14}H_{16}BrNO_3S_2$ has been synthesized by the reaction of 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) with a salt of morpholine-4-carbodithioate. In this compound (Fig. 1), the dihedral angle between the phenolic ring system and the plane defined by atoms S1,S2,C9,C10,C13 of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. The maximum deviation from the least-squares plane to this fragment is 0.040 (2) Å (C9). A strong intramolecular hydrogen bond between the phenolic O1—H group and a carbonyl O-atom acceptor atom of the side chain (O2) is present (Table 1). In the crystal there is a weak intermolecular C4—H···S2ⁱ association [3.712 (3)Å] and weak C3—H···O3ⁱⁱ and C12—H···O1ⁱⁱⁱ hydrogen bonds [3.443 (4) and 3.454(4 Å, respectively] (for symmetry codes, see Table 1).

S2. Experimental

To a solution of 0.924 g (3 mmol) 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) in 10 ml of acetone was added a solution of 0.75 g (3 mmol) morpholinium morpholine-4-carbodithioate in 10 ml acetone-water (1:1). The reaction mixture was heated at reflux for 10 min, cooled to room temperature and then poured into water. The precipitate was filtered, washed with water and dried (m.p. 412–413 K). IR (ATR): v_{max} 2852, 1643, 1466, 1424, 1258, 1228, 1111, 999, 624, 543 cm⁻¹. ¹H NMR (300 MHz, DMSO-d6): $\delta = 1.57$ (d, 3H, CH3), 3.74 (m, 4H, 2CH2-O), 4.09 (m, 4H, 2CH2-N), 5.75 (q, 1H, CH), 6.88 (d, 3 J=8.0 Hz, 1H), 7.53 (dd, 3 J=8.0 Hz, 4 J=1.1 Hz, 1H), 8.04 (d, 4 J=1.1 Hz, 1H), 11.04 (s, 1H, OH). ¹³C {¹H} NMR (75 MHz, DMSO-d6): $\delta = 17.2$ (*q*), 51.2 (*d*), 52.3 (*t*), 66.7 (*t*), 111.3 (*s*), 119.8 (*d*), 121.1 (*s*), 133.0 (*d*), 133.3 (*d*), 162.4 (*s*), 194.4 (*s*), 203.5 (*s*).

S3. Refinement

The C-bound H-atoms were included at calculated positions and treated using a riding model, with aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å and methine C—H = 1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, or with methyl C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. The phenolic H-atom (H1) was free refined.

Figure 1

Molecular conformation and atom numbering scheme for the title compound, with thermal ellipsoids drawn at the 50% probability level.

rac-1-(5-Bromo-2-hydroxyphenyl)-1-oxopropan-2-yl morpholine-4-carbodithioate

Crystal data

C₁₄H₁₆BrNO₃S₂ $M_r = 390.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.182 (2) Å b = 19.660 (4) Å c = 7.4593 (15) Å $\beta = 105.44$ (3)° V = 1580.6 (5) Å³ Z = 4

Data collection

Stoe IPDS 2T area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 6.67 pixels mm ⁻¹
rotation method scans
Absorption correction: for a sphere
[modification of the interpolation procedure of
Dwiggins (1975)]

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.102$ S = 1.164246 reflections 195 parameters 0 restraints F(000) = 792 $D_x = 1.640 \text{ Mg m}^{-3}$ Melting point = 412–413 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 26120 reflections $\theta = 2.2-29.7^{\circ}$ $\mu = 2.87 \text{ mm}^{-1}$ T = 153 KPrism, colourless $0.54 \times 0.48 \times 0.30 \text{ mm}$

 $T_{\min} = 0.114, T_{\max} = 0.140$ 17019 measured reflections 4246 independent reflections 3807 reflections with $I > 2\sigma(I)$ $R_{int} = 0.072$ $\theta_{\max} = 29.2^{\circ}, \theta_{\min} = 2.8^{\circ}$ $h = -15 \rightarrow 13$ $k = -25 \rightarrow 26$ $l = -10 \rightarrow 10$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0355P)^2 + 1.2363P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.71 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.78 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Experimental. Absorption correction: interpolation using International Tables Vol C, Table 6.3.3.3 for values of muR in the range 0-2.5, and International Tables Vol. II, Table 5.3.6 B for μ R in the range 2.6-10.0. The interpolation procedure (Dwiggins, 1975) was used with some modification.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Ν	0.7046 (2)	0.59260 (10)	-0.3669 (3)	0.0291 (4)	
Br	0.94733 (3)	0.200387 (14)	0.15953 (5)	0.04007 (10)	
S1	0.82823 (6)	0.55807 (3)	-0.03082(8)	0.02727 (13)	
S2	0.72078 (6)	0.45824 (3)	-0.33614 (9)	0.03161 (15)	
O1	0.50712 (18)	0.37914 (11)	0.1313 (3)	0.0344 (4)	
H1	0.525 (4)	0.416 (2)	0.120 (6)	0.059 (13)*	
O2	0.63809 (17)	0.48119 (9)	0.0864 (3)	0.0316 (4)	
O3	0.6883 (2)	0.70107 (9)	-0.6200 (3)	0.0378 (5)	
C1	0.7188 (2)	0.36994 (12)	0.1107 (3)	0.0243 (4)	
C2	0.6083 (2)	0.34177 (13)	0.1327 (3)	0.0269 (5)	
C3	0.5990 (3)	0.27144 (14)	0.1556 (4)	0.0320 (5)	
Н3	0.5233	0.2522	0.1665	0.038*	
C4	0.6994 (3)	0.23020 (13)	0.1624 (4)	0.0320 (5)	
H4	0.6934	0.1826	0.1794	0.038*	
C5	0.8095 (2)	0.25820 (12)	0.1445 (3)	0.0281 (5)	
C6	0.8199 (2)	0.32679 (13)	0.1174 (3)	0.0269 (5)	
H6	0.8955	0.3450	0.1031	0.032*	
C7	0.7261 (2)	0.44422 (12)	0.0859 (3)	0.0246 (4)	
C8	0.8494 (2)	0.47533 (12)	0.0777 (3)	0.0255 (4)	
H8	0.8923	0.4444	0.0084	0.031*	
C9	0.7432 (2)	0.53841 (11)	-0.2621 (3)	0.0238 (4)	
C10	0.7202 (3)	0.66338 (12)	-0.3028 (4)	0.0359 (6)	
H10A	0.7798	0.6655	-0.1782	0.043*	
H10B	0.6397	0.6816	-0.2927	0.043*	
C11	0.7672 (3)	0.70563 (12)	-0.4379 (4)	0.0311 (5)	
H11A	0.7733	0.7537	-0.3972	0.037*	
H11B	0.8513	0.6900	-0.4379	0.037*	
C12	0.6805 (3)	0.63236 (14)	-0.6823 (4)	0.0393 (7)	
H12A	0.7643	0.6159	-0.6817	0.047*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H12B	0.6274	0.6299	-0.8116	0.047*	
C13	0.6270 (3)	0.58721 (13)	-0.5588 (4)	0.0353 (6)	
H13A	0.5411	0.6015	-0.5652	0.042*	
H13B	0.6249	0.5394	-0.6016	0.042*	
C14	0.9305 (3)	0.48568 (15)	0.2771 (4)	0.0332 (5)	
H14A	0.8848	0.5126	0.3476	0.050*	
H14B	1.0067	0.5097	0.2740	0.050*	
H14C	0.9517	0.4413	0.3372	0.050*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N	0.0470 (13)	0.0183 (9)	0.0238 (9)	-0.0032 (8)	0.0125 (9)	-0.0015 (7)
Br	0.03949 (16)	0.03294 (15)	0.04765 (17)	0.00946 (11)	0.01139 (12)	0.00128 (11)
S1	0.0348 (3)	0.0231 (3)	0.0248 (3)	-0.0061 (2)	0.0095 (2)	-0.0022 (2)
S2	0.0381 (3)	0.0189 (2)	0.0340 (3)	-0.0042 (2)	0.0029 (3)	-0.0027 (2)
01	0.0267 (9)	0.0330 (10)	0.0462 (11)	-0.0017 (7)	0.0143 (8)	0.0047 (8)
O2	0.0280 (9)	0.0295 (9)	0.0393 (10)	0.0013 (7)	0.0127 (8)	0.0029 (7)
O3	0.0579 (13)	0.0268 (9)	0.0293 (9)	0.0021 (8)	0.0125 (9)	0.0056 (7)
C1	0.0268 (11)	0.0257 (10)	0.0202 (9)	-0.0017 (8)	0.0058 (8)	0.0018 (8)
C2	0.0256 (11)	0.0304 (11)	0.0241 (10)	-0.0029 (9)	0.0056 (9)	0.0017 (9)
C3	0.0311 (12)	0.0326 (12)	0.0329 (12)	-0.0058 (10)	0.0096 (10)	0.0015 (10)
C4	0.0391 (14)	0.0263 (11)	0.0300 (12)	-0.0037 (10)	0.0080 (11)	0.0019 (9)
C5	0.0326 (12)	0.0269 (11)	0.0242 (11)	0.0037 (9)	0.0063 (9)	0.0013 (9)
C6	0.0257 (11)	0.0294 (11)	0.0245 (10)	-0.0014 (9)	0.0049 (9)	-0.0002 (9)
C7	0.0247 (11)	0.0260 (10)	0.0232 (10)	-0.0024 (8)	0.0067 (8)	0.0014 (8)
C8	0.0254 (11)	0.0263 (10)	0.0256 (10)	-0.0020 (9)	0.0082 (9)	0.0013 (8)
C9	0.0271 (11)	0.0206 (9)	0.0263 (10)	-0.0040 (8)	0.0117 (9)	-0.0005 (8)
C10	0.0671 (19)	0.0182 (10)	0.0289 (12)	-0.0029 (11)	0.0240 (13)	0.0000 (9)
C11	0.0418 (14)	0.0247 (11)	0.0306 (12)	-0.0031 (10)	0.0161 (11)	-0.0006 (9)
C12	0.062 (2)	0.0291 (12)	0.0234 (11)	0.0014 (12)	0.0061 (12)	-0.0007 (9)
C13	0.0399 (14)	0.0272 (12)	0.0335 (13)	-0.0032 (10)	0.0006 (11)	0.0011 (10)
C14	0.0287 (12)	0.0398 (14)	0.0292 (11)	-0.0039 (10)	0.0044 (10)	0.0007 (10)

Geometric parameters (Å, °)

N—C9	1.324 (3)	C4—H4	0.9500
N-C10	1.467 (3)	C5—C6	1.373 (3)
N—C13	1.467 (3)	С6—Н6	0.9500
Br—C5	1.894 (3)	C7—C8	1.524 (3)
S1—C9	1.776 (2)	C8—C14	1.536 (3)
S1—C8	1.804 (2)	C8—H8	1.0000
S2—C9	1.667 (2)	C10-C11	1.504 (3)
O1—C2	1.346 (3)	C10—H10A	0.9900
01—H1	0.77 (4)	C10—H10B	0.9900
O2—C7	1.224 (3)	C11—H11A	0.9900
O3—C11	1.412 (3)	C11—H11B	0.9900
O3—C12	1.424 (3)	C12—C13	1.512 (4)

supporting information

C1—C6	1.403 (3)	C12—H12A	0.9900
C1—C2	1.404 (3)	C12—H12B	0.9900
C1—C7	1.477 (3)	C13—H13A	0.9900
C2—C3	1 400 (4)	C13—H13B	0 9900
$C_3 - C_4$	1 375 (4)	C14—H14A	0.9800
C_3 H_3	0.9500	C14 $H14B$	0.9800
C4 C5	1.387(A)		0.9800
64-63	1.567 (4)		0.9800
C9—N—C10	125.4 (2)	N—C9—S2	124.63 (19)
C9—N—C13	122.2 (2)	N—C9—S1	113.86 (17)
C10—N—C13	112.0 (2)	S2-C9-S1	121.47 (14)
C9 = S1 = C8	102.22(11)	N - C10 - C11	1097(2)
C2	106 (3)	N	109.7 (2)
$C_{11} = 0_{3} = C_{12}$	1100(3)	C_{11} C_{10} H_{10A}	109.7
C_{1}^{-}	110.0(2)	N C10 H10P	109.7
$C_{0} = C_{1} = C_{2}$	110.9(2) 122.1(2)	$\begin{array}{ccc} \mathbf{n} & \mathbf{-} \mathbf{C} 10 & \mathbf{H} 10 \mathbf{P} \\ \mathbf{C} 11 & \mathbf{C} 10 & \mathbf{H} 10 \mathbf{P} \end{array}$	109.7
$C_0 = C_1 = C_7$	122.1(2)		109.7
$C_2 = C_1 = C_1$	118.9 (2)	HIUA—CIU—HIUB	108.2
01 - C2 - C3	116.8 (2)	03-011-010	111.7 (2)
01	123.2 (2)	O3—CII—HIIA	109.3
C3—C2—C1	120.0 (2)	C10—C11—H11A	109.3
C4—C3—C2	120.0 (2)	O3—C11—H11B	109.3
С4—С3—Н3	120.0	C10—C11—H11B	109.3
С2—С3—Н3	120.0	H11A—C11—H11B	107.9
C3—C4—C5	120.0 (2)	O3—C12—C13	111.0 (2)
C3—C4—H4	120.0	O3—C12—H12A	109.4
C5—C4—H4	120.0	C13—C12—H12A	109.4
C6—C5—C4	121.1 (2)	O3—C12—H12B	109.4
C6—C5—Br	119.9 (2)	C13—C12—H12B	109.4
C4—C5—Br	119.03 (19)	H12A—C12—H12B	108.0
C5—C6—C1	1200(2)	N-C13-C12	109.0(2)
C5-C6-H6	120.0	N	109.9
C_1 C_6 H_6	120.0	C_{12} C_{13} H_{13A}	109.9
$O_2 C_7 C_1$	120.0 121.1(2)	N C13 H13B	109.9
02 - 07 - 01	121.1(2) 1100(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.9
02 - 07 - 08	119.9(2)		109.9
$C_{1} - C_{8}$	110.0(2)		108.5
C/C8C14	108.8 (2)	$C_8 - C_1 4 - H_1 4 A$	109.5
C/	111.58 (17)		109.5
C14—C8—S1	106.75 (17)	H14A—C14—H14B	109.5
С7—С8—Н8	109.9	C8—C14—H14C	109.5
C14—C8—H8	109.9	H14A—C14—H14C	109.5
S1—C8—H8	109.9	H14B—C14—H14C	109.5
	179.0 (2)	$O_2 = C_2 = C_2 = S_1$	25.7(2)
$C_0 - C_1 - C_2 - O_1$	1/8.9 (2)	02 - 07 - 08 - 81	-25.7(3)
C = C = C = C = C = C = C = C = C = C =	0.4 (3)	$C_1 - C_1 - C_2 - S_1$	139.95 (17)
C6-C1-C2-C3	-1.8(3)	C9—S1—C8—C7	-65.12 (19)
C/C1C2C3	179.7 (2)	C9—S1—C8—C14	176.19 (17)
O1—C2—C3—C4	-178.6 (2)	C10—N—C9—S2	178.1 (2)
C1—C2—C3—C4	2.1 (4)	C13—N—C9—S2	5.6 (4)

		G10 NI G0 G1	
C2—C3—C4—C5	-0.7 (4)	C10—N—C9—S1	-4.1 (3)
C3—C4—C5—C6	-0.9 (4)	C13—N—C9—S1	-176.5 (2)
C3—C4—C5—Br	178.7 (2)	C8—S1—C9—N	173.43 (19)
C4—C5—C6—C1	1.2 (4)	C8—S1—C9—S2	-8.64 (18)
Br—C5—C6—C1	-178.47 (18)	C9—N—C10—C11	133.4 (3)
C2-C1-C6-C5	0.2 (3)	C13—N—C10—C11	-53.5 (3)
C7—C1—C6—C5	178.6 (2)	C12-O3-C11-C10	-60.2 (3)
C6—C1—C7—O2	-177.6 (2)	N-C10-C11-O3	56.1 (3)
C2-C1-C7-O2	0.8 (3)	C11-O3-C12-C13	61.1 (3)
C6—C1—C7—C8	-3.3 (3)	C9—N—C13—C12	-132.4 (3)
C2-C1-C7-C8	175.1 (2)	C10-N-C13-C12	54.3 (3)
O2—C7—C8—C14	91.8 (3)	O3—C12—C13—N	-57.7 (3)
C1—C7—C8—C14	-82.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…O2	0.76 (4)	1.86 (4)	2.558 (3)	151 (5)
$C4$ — $H4$ ··· $S2^{i}$	0.95	2.79	3.712 (3)	164
C3—H3…O3 ⁱⁱ	0.95	2.51	3.443 (4)	168
C12—H12 <i>B</i> ···O1 ⁱⁱⁱ	0.99	2.46	3.454 (4)	178

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*-1/2; (iii) -*x*+1, -*y*+1, -*z*-1.