organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-1-(5-Bromo-2-hy­dr­oxy­phen­yl)-1-oxopropan-2-yl morpholine-4-carbo­di­thio­ate

aDepartment of Chemistry, "Al. I. Cuza" University Iasi, 11 Carol I Bvd, Iasi 700506, Romania, and bChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany
*Correspondence e-mail: lbirsa@uaic.ro

(Received 6 June 2013; accepted 25 June 2013; online 29 June 2013)

In the racemic title compound, C14H16BrNO3S2, synthesized from the corresponding ω-bromo­propio­phenone, the dihedral angle between the plane of the phenol group and that of the planar section [maximum deviation = 0.040 (2) Å] of the morpholine-4-carbodi­thiol­ate moiety is 76.36 (10)°. A strong intra­molecular phenol O—H⋯O hydrogen bond if present in the mol­ecule. In the crystal, only weak C—H⋯S and C—H⋯O inter­actions are found.

Related literature

For the synthesis and applications of di­thio­carbamates, see: Buu-Hoi & Lavit (1955[Buu-Hoi, Ng. Ph. & Lavit, D. (1955). J. Chem. Soc., pp. 18-20.]); WHO (1998[WHO (1998). http://www.inchem.org/documents/ehc/ehc/ehc78.htm.]). For applications of 1,3-di­thiol­ium salts, see: Narita & Pittman (1976[Narita, M. & Pittman, C. U. Jr (1976). Synthesis, pp. 489-514.]); Birsa & Asaftei (2008[Birsa, M. L. & Asaftei, I. V. (2008). Monatsh. Chem. 139, 1433-1438.]). For the structure of a related morpholine-4-carbodi­thio­ate, see: Bahrin et al. (2012[Bahrin, L. G., Jones, P. G. & Hopf, H. (2012). Beilstein J. Org. Chem. 8, 1999-2003.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16BrNO3S2

  • Mr = 390.31

  • Monoclinic, P 21 /c

  • a = 11.182 (2) Å

  • b = 19.660 (4) Å

  • c = 7.4593 (15) Å

  • β = 105.44 (3)°

  • V = 1580.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 153 K

  • 0.54 × 0.48 × 0.30 mm

Data collection
  • Stoe IPDS 2T area-detector diffractometer

  • Absorption correction: for a sphere [modification of the interpolation procedure of Dwiggins (1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.])] Tmin = 0.114, Tmax = 0.140

  • 17019 measured reflections

  • 4246 independent reflections

  • 3807 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.16

  • 4246 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.76 (4) 1.86 (4) 2.558 (3) 151 (5)
C4—H4⋯S2i 0.95 2.79 3.712 (3) 164
C3—H3⋯O3ii 0.95 2.51 3.443 (4) 168
C12—H12B⋯O1iii 0.99 2.46 3.454 (4) 178
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z-1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dithiocarbamates have important uses as chemical precursors, effluent additives, agricultural pesticides, and in experimental and clinical medicine (WHO, 1998). In particular, phenacyldithiocarbamates are important precursors of 1,3-dithiolium salts (Birsa & Asaftei, 2008), which in turn are well known precursors of tetrathiafulvalenes (Narita & Pittman, 1976). The racemic title compound C14H16BrNO3S2 has been synthesized by the reaction of 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) with a salt of morpholine-4-carbodithioate. In this compound (Fig. 1), the dihedral angle between the phenolic ring system and the plane defined by atoms S1,S2,C9,C10,C13 of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. The maximum deviation from the least-squares plane to this fragment is 0.040 (2) Å (C9). A strong intramolecular hydrogen bond between the phenolic O1—H group and a carbonyl O-atom acceptor atom of the side chain (O2) is present (Table 1). In the crystal there is a weak intermolecular C4—H···S2i association [3.712 (3)Å] and weak C3—H···O3ii and C12—H···O1iii hydrogen bonds [3.443 (4) and 3.454(4 Å, respectively] (for symmetry codes, see Table 1).

Related literature top

For the synthesis and applications of dithiocarbamates, see: Buu-Hoi & Lavit (1955); WHO (1998). For applications of 1,3-dithiolium salts, see: Narita & Pittman (1976); Birsa & Asaftei (2008). For the structure of a related morpholine-4-carbodithioate, see: Bahrin et al. (2012)

Experimental top

To a solution of 0.924 g (3 mmol) 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) in 10 ml of acetone was added a solution of 0.75 g (3 mmol) morpholinium morpholine-4-carbodithioate in 10 ml acetone-water (1:1). The reaction mixture was heated at reflux for 10 min, cooled to room temperature and then poured into water. The precipitate was filtered, washed with water and dried (m.p. 412–413 K). IR (ATR): νmax 2852, 1643, 1466, 1424, 1258, 1228, 1111, 999, 624, 543 cm-1. 1H NMR (300 MHz, DMSO-d6): δ = 1.57 (d, 3H, CH3), 3.74 (m, 4H, 2CH2-O), 4.09 (m, 4H, 2CH2-N), 5.75 (q, 1H, CH), 6.88 (d, 3 J=8.0 Hz, 1H), 7.53 (dd, 3 J=8.0 Hz, 4 J=1.1 Hz, 1H), 8.04 (d, 4 J=1.1 Hz, 1H), 11.04 (s, 1H, OH). 13C{1H} NMR (75 MHz, DMSO-d6): δ = 17.2 (q), 51.2 (d), 52.3 (t), 66.7 (t), 111.3 (s), 119.8 (d), 121.1 (s), 133.0 (d), 133.3 (d), 162.4 (s), 194.4 (s), 203.5 (s).

Refinement top

The C-bound H-atoms were included at calculated positions and treated using a riding model, with aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å and methine C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), or with methyl C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The phenolic H-atom (H1) was free refined.

Structure description top

Dithiocarbamates have important uses as chemical precursors, effluent additives, agricultural pesticides, and in experimental and clinical medicine (WHO, 1998). In particular, phenacyldithiocarbamates are important precursors of 1,3-dithiolium salts (Birsa & Asaftei, 2008), which in turn are well known precursors of tetrathiafulvalenes (Narita & Pittman, 1976). The racemic title compound C14H16BrNO3S2 has been synthesized by the reaction of 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) with a salt of morpholine-4-carbodithioate. In this compound (Fig. 1), the dihedral angle between the phenolic ring system and the plane defined by atoms S1,S2,C9,C10,C13 of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. The maximum deviation from the least-squares plane to this fragment is 0.040 (2) Å (C9). A strong intramolecular hydrogen bond between the phenolic O1—H group and a carbonyl O-atom acceptor atom of the side chain (O2) is present (Table 1). In the crystal there is a weak intermolecular C4—H···S2i association [3.712 (3)Å] and weak C3—H···O3ii and C12—H···O1iii hydrogen bonds [3.443 (4) and 3.454(4 Å, respectively] (for symmetry codes, see Table 1).

For the synthesis and applications of dithiocarbamates, see: Buu-Hoi & Lavit (1955); WHO (1998). For applications of 1,3-dithiolium salts, see: Narita & Pittman (1976); Birsa & Asaftei (2008). For the structure of a related morpholine-4-carbodithioate, see: Bahrin et al. (2012)

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with thermal ellipsoids drawn at the 50% probability level.
rac-1-(5-Bromo-2-hydroxyphenyl)-1-oxopropan-2-yl morpholine-4-carbodithioate top
Crystal data top
C14H16BrNO3S2F(000) = 792
Mr = 390.31Dx = 1.640 Mg m3
Monoclinic, P21/cMelting point = 412–413 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.182 (2) ÅCell parameters from 26120 reflections
b = 19.660 (4) Åθ = 2.2–29.7°
c = 7.4593 (15) ŵ = 2.87 mm1
β = 105.44 (3)°T = 153 K
V = 1580.6 (5) Å3Prism, colourless
Z = 40.54 × 0.48 × 0.30 mm
Data collection top
Stoe IPDS 2T area-detector
diffractometer
4246 independent reflections
Radiation source: fine-focus sealed tube3807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.8°
rotation method scansh = 1513
Absorption correction: for a sphere
[modification of the interpolation procedure of Dwiggins (1975)]
k = 2526
Tmin = 0.114, Tmax = 0.140l = 1010
17019 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0355P)2 + 1.2363P]
where P = (Fo2 + 2Fc2)/3
4246 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C14H16BrNO3S2V = 1580.6 (5) Å3
Mr = 390.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.182 (2) ŵ = 2.87 mm1
b = 19.660 (4) ÅT = 153 K
c = 7.4593 (15) Å0.54 × 0.48 × 0.30 mm
β = 105.44 (3)°
Data collection top
Stoe IPDS 2T area-detector
diffractometer
4246 independent reflections
Absorption correction: for a sphere
[modification of the interpolation procedure of Dwiggins (1975)]
3807 reflections with I > 2σ(I)
Tmin = 0.114, Tmax = 0.140Rint = 0.072
17019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.71 e Å3
4246 reflectionsΔρmin = 0.78 e Å3
195 parameters
Special details top

Experimental. Absorption correction: interpolation using International Tables Vol C, Table 6.3.3.3 for values of muR in the range 0-2.5, and International Tables Vol. II, Table 5.3.6 B for µR in the range 2.6-10.0. The interpolation procedure (Dwiggins, 1975) was used with some modification.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7046 (2)0.59260 (10)0.3669 (3)0.0291 (4)
Br0.94733 (3)0.200387 (14)0.15953 (5)0.04007 (10)
S10.82823 (6)0.55807 (3)0.03082 (8)0.02727 (13)
S20.72078 (6)0.45824 (3)0.33614 (9)0.03161 (15)
O10.50712 (18)0.37914 (11)0.1313 (3)0.0344 (4)
H10.525 (4)0.416 (2)0.120 (6)0.059 (13)*
O20.63809 (17)0.48119 (9)0.0864 (3)0.0316 (4)
O30.6883 (2)0.70107 (9)0.6200 (3)0.0378 (5)
C10.7188 (2)0.36994 (12)0.1107 (3)0.0243 (4)
C20.6083 (2)0.34177 (13)0.1327 (3)0.0269 (5)
C30.5990 (3)0.27144 (14)0.1556 (4)0.0320 (5)
H30.52330.25220.16650.038*
C40.6994 (3)0.23020 (13)0.1624 (4)0.0320 (5)
H40.69340.18260.17940.038*
C50.8095 (2)0.25820 (12)0.1445 (3)0.0281 (5)
C60.8199 (2)0.32679 (13)0.1174 (3)0.0269 (5)
H60.89550.34500.10310.032*
C70.7261 (2)0.44422 (12)0.0859 (3)0.0246 (4)
C80.8494 (2)0.47533 (12)0.0777 (3)0.0255 (4)
H80.89230.44440.00840.031*
C90.7432 (2)0.53841 (11)0.2621 (3)0.0238 (4)
C100.7202 (3)0.66338 (12)0.3028 (4)0.0359 (6)
H10A0.77980.66550.17820.043*
H10B0.63970.68160.29270.043*
C110.7672 (3)0.70563 (12)0.4379 (4)0.0311 (5)
H11A0.77330.75370.39720.037*
H11B0.85130.69000.43790.037*
C120.6805 (3)0.63236 (14)0.6823 (4)0.0393 (7)
H12A0.76430.61590.68170.047*
H12B0.62740.62990.81160.047*
C130.6270 (3)0.58721 (13)0.5588 (4)0.0353 (6)
H13A0.54110.60150.56520.042*
H13B0.62490.53940.60160.042*
C140.9305 (3)0.48568 (15)0.2771 (4)0.0332 (5)
H14A0.88480.51260.34760.050*
H14B1.00670.50970.27400.050*
H14C0.95170.44130.33720.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0470 (13)0.0183 (9)0.0238 (9)0.0032 (8)0.0125 (9)0.0015 (7)
Br0.03949 (16)0.03294 (15)0.04765 (17)0.00946 (11)0.01139 (12)0.00128 (11)
S10.0348 (3)0.0231 (3)0.0248 (3)0.0061 (2)0.0095 (2)0.0022 (2)
S20.0381 (3)0.0189 (2)0.0340 (3)0.0042 (2)0.0029 (3)0.0027 (2)
O10.0267 (9)0.0330 (10)0.0462 (11)0.0017 (7)0.0143 (8)0.0047 (8)
O20.0280 (9)0.0295 (9)0.0393 (10)0.0013 (7)0.0127 (8)0.0029 (7)
O30.0579 (13)0.0268 (9)0.0293 (9)0.0021 (8)0.0125 (9)0.0056 (7)
C10.0268 (11)0.0257 (10)0.0202 (9)0.0017 (8)0.0058 (8)0.0018 (8)
C20.0256 (11)0.0304 (11)0.0241 (10)0.0029 (9)0.0056 (9)0.0017 (9)
C30.0311 (12)0.0326 (12)0.0329 (12)0.0058 (10)0.0096 (10)0.0015 (10)
C40.0391 (14)0.0263 (11)0.0300 (12)0.0037 (10)0.0080 (11)0.0019 (9)
C50.0326 (12)0.0269 (11)0.0242 (11)0.0037 (9)0.0063 (9)0.0013 (9)
C60.0257 (11)0.0294 (11)0.0245 (10)0.0014 (9)0.0049 (9)0.0002 (9)
C70.0247 (11)0.0260 (10)0.0232 (10)0.0024 (8)0.0067 (8)0.0014 (8)
C80.0254 (11)0.0263 (10)0.0256 (10)0.0020 (9)0.0082 (9)0.0013 (8)
C90.0271 (11)0.0206 (9)0.0263 (10)0.0040 (8)0.0117 (9)0.0005 (8)
C100.0671 (19)0.0182 (10)0.0289 (12)0.0029 (11)0.0240 (13)0.0000 (9)
C110.0418 (14)0.0247 (11)0.0306 (12)0.0031 (10)0.0161 (11)0.0006 (9)
C120.062 (2)0.0291 (12)0.0234 (11)0.0014 (12)0.0061 (12)0.0007 (9)
C130.0399 (14)0.0272 (12)0.0335 (13)0.0032 (10)0.0006 (11)0.0011 (10)
C140.0287 (12)0.0398 (14)0.0292 (11)0.0039 (10)0.0044 (10)0.0007 (10)
Geometric parameters (Å, º) top
N—C91.324 (3)C4—H40.9500
N—C101.467 (3)C5—C61.373 (3)
N—C131.467 (3)C6—H60.9500
Br—C51.894 (3)C7—C81.524 (3)
S1—C91.776 (2)C8—C141.536 (3)
S1—C81.804 (2)C8—H81.0000
S2—C91.667 (2)C10—C111.504 (3)
O1—C21.346 (3)C10—H10A0.9900
O1—H10.77 (4)C10—H10B0.9900
O2—C71.224 (3)C11—H11A0.9900
O3—C111.412 (3)C11—H11B0.9900
O3—C121.424 (3)C12—C131.512 (4)
C1—C61.403 (3)C12—H12A0.9900
C1—C21.404 (3)C12—H12B0.9900
C1—C71.477 (3)C13—H13A0.9900
C2—C31.400 (4)C13—H13B0.9900
C3—C41.375 (4)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.387 (4)C14—H14C0.9800
C9—N—C10125.4 (2)N—C9—S2124.63 (19)
C9—N—C13122.2 (2)N—C9—S1113.86 (17)
C10—N—C13112.0 (2)S2—C9—S1121.47 (14)
C9—S1—C8102.22 (11)N—C10—C11109.7 (2)
C2—O1—H1106 (3)N—C10—H10A109.7
C11—O3—C12110.0 (2)C11—C10—H10A109.7
C6—C1—C2118.9 (2)N—C10—H10B109.7
C6—C1—C7122.1 (2)C11—C10—H10B109.7
C2—C1—C7118.9 (2)H10A—C10—H10B108.2
O1—C2—C3116.8 (2)O3—C11—C10111.7 (2)
O1—C2—C1123.2 (2)O3—C11—H11A109.3
C3—C2—C1120.0 (2)C10—C11—H11A109.3
C4—C3—C2120.0 (2)O3—C11—H11B109.3
C4—C3—H3120.0C10—C11—H11B109.3
C2—C3—H3120.0H11A—C11—H11B107.9
C3—C4—C5120.0 (2)O3—C12—C13111.0 (2)
C3—C4—H4120.0O3—C12—H12A109.4
C5—C4—H4120.0C13—C12—H12A109.4
C6—C5—C4121.1 (2)O3—C12—H12B109.4
C6—C5—Br119.9 (2)C13—C12—H12B109.4
C4—C5—Br119.03 (19)H12A—C12—H12B108.0
C5—C6—C1120.0 (2)N—C13—C12109.0 (2)
C5—C6—H6120.0N—C13—H13A109.9
C1—C6—H6120.0C12—C13—H13A109.9
O2—C7—C1121.1 (2)N—C13—H13B109.9
O2—C7—C8119.9 (2)C12—C13—H13B109.9
C1—C7—C8118.8 (2)H13A—C13—H13B108.3
C7—C8—C14108.8 (2)C8—C14—H14A109.5
C7—C8—S1111.58 (17)C8—C14—H14B109.5
C14—C8—S1106.75 (17)H14A—C14—H14B109.5
C7—C8—H8109.9C8—C14—H14C109.5
C14—C8—H8109.9H14A—C14—H14C109.5
S1—C8—H8109.9H14B—C14—H14C109.5
C6—C1—C2—O1178.9 (2)O2—C7—C8—S125.7 (3)
C7—C1—C2—O10.4 (3)C1—C7—C8—S1159.95 (17)
C6—C1—C2—C31.8 (3)C9—S1—C8—C765.12 (19)
C7—C1—C2—C3179.7 (2)C9—S1—C8—C14176.19 (17)
O1—C2—C3—C4178.6 (2)C10—N—C9—S2178.1 (2)
C1—C2—C3—C42.1 (4)C13—N—C9—S25.6 (4)
C2—C3—C4—C50.7 (4)C10—N—C9—S14.1 (3)
C3—C4—C5—C60.9 (4)C13—N—C9—S1176.5 (2)
C3—C4—C5—Br178.7 (2)C8—S1—C9—N173.43 (19)
C4—C5—C6—C11.2 (4)C8—S1—C9—S28.64 (18)
Br—C5—C6—C1178.47 (18)C9—N—C10—C11133.4 (3)
C2—C1—C6—C50.2 (3)C13—N—C10—C1153.5 (3)
C7—C1—C6—C5178.6 (2)C12—O3—C11—C1060.2 (3)
C6—C1—C7—O2177.6 (2)N—C10—C11—O356.1 (3)
C2—C1—C7—O20.8 (3)C11—O3—C12—C1361.1 (3)
C6—C1—C7—C83.3 (3)C9—N—C13—C12132.4 (3)
C2—C1—C7—C8175.1 (2)C10—N—C13—C1254.3 (3)
O2—C7—C8—C1491.8 (3)O3—C12—C13—N57.7 (3)
C1—C7—C8—C1482.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.76 (4)1.86 (4)2.558 (3)151 (5)
C4—H4···S2i0.952.793.712 (3)164
C3—H3···O3ii0.952.513.443 (4)168
C12—H12B···O1iii0.992.463.454 (4)178
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z1/2; (iii) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC14H16BrNO3S2
Mr390.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)11.182 (2), 19.660 (4), 7.4593 (15)
β (°) 105.44 (3)
V3)1580.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.54 × 0.48 × 0.30
Data collection
DiffractometerStoe IPDS 2T area-detector
Absorption correctionFor a sphere
[modification of the interpolation procedure of Dwiggins (1975)]
Tmin, Tmax0.114, 0.140
No. of measured, independent and
observed [I > 2σ(I)] reflections
17019, 4246, 3807
Rint0.072
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.16
No. of reflections4246
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.78

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.76 (4)1.86 (4)2.558 (3)151 (5)
C4—H4···S2i0.952.793.712 (3)164
C3—H3···O3ii0.952.513.443 (4)168
C12—H12B···O1iii0.992.463.454 (4)178
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z1/2; (iii) x+1, y+1, z1.
 

Acknowledgements

Part of this work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI, project No. 51/2012.

References

First citationBahrin, L. G., Jones, P. G. & Hopf, H. (2012). Beilstein J. Org. Chem. 8, 1999–2003.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBirsa, M. L. & Asaftei, I. V. (2008). Monatsh. Chem. 139, 1433–1438.  Web of Science CrossRef CAS Google Scholar
First citationBuu-Hoi, Ng. Ph. & Lavit, D. (1955). J. Chem. Soc., pp. 18–20.  Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNarita, M. & Pittman, C. U. Jr (1976). Synthesis, pp. 489–514.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWHO (1998). http://www.inchem.org/documents/ehc/ehc/ehc78.htmGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds