organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-[5-methyl-2-(morpholin-4-yl)-1,3-thia­zol-4-yl]phenol

aDepartment of Chemistry, "Al. I. Cuza" University Iasi, 11 Carol I Bvd, Iasi 700506, Romania, and bChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany
*Correspondence e-mail: lbirsa@uaic.ro

(Received 6 June 2013; accepted 25 June 2013; online 29 June 2013)

In the title compound, C14H15BrN2O2S, synthesized by the reaction of the corresponding phenacyl thio­cyanate with morpholine, the dihedral angle between the 1,3-thia­zole ring and the phenolic substituent ring is 23.46 (10)° as a result of the steric influence of the ortho-methyl group on the thia­zole ring. A strong intra­molecular phenolic O—H⋯N hydrogen bond is present in the mol­ecule. In the crystal, a weak C—H⋯Ophenol hydrogen bond gives rise to chains lying parallel to [20-1]. A short inter­molecular Br⋯Omorpholine inter­action is also present [3.1338 (19) Å].

Related literature

For details of the synthesis, see: Seliger et al. (1997[Seliger, H., Happ, E., Cascaval, A., Birsa, M. L. & Novitschi, G. (1997). An. St. Univ. Al. I. Cuza Iasi, 5, 123-128.]). For a recent review on thia­zoles, see: Zagade & Senthilkumar (2011[Zagade, A. A. & Senthilkumar, G. P. (2011). Pharma Chem. 3, 523-537.]). For the pharmacological activity and applications of thia­zole derivatives, see: Ghaemmaghami et al. (2010[Ghaemmaghami, S., May, B. C. H., Renslo, A. R. & Prusiner, S. B. (2010). J. Virol. 84, 3408-3412.]); Coco & Onnis (1993[Coco, M. T. & Onnis, V. (1993). Synthesis, pp. 199-201.]); Gewald et al. (1994[Gewald, K., Hain, U., Schindler, R. & Gruner, M. (1994). Monatsh. Chem. 125, 1129-1143.]); Tanaka et al. (1994[Tanaka, A., Sakai, H., Motoyama, Y., Ishikawa, T. & Takasugi, H. (1994). J. Med. Chem. 37, 1189-1199.]); Zimmermann et al. (1990[Zimmermann, T., Fischer, G. W., Teller, J., Dehne, H. & Olk, B. (1990). J. Prakt. Chem. 332, 723-730.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrN2O2S

  • Mr = 355.25

  • Monoclinic, P 21 /c

  • a = 12.026 (2) Å

  • b = 8.3448 (17) Å

  • c = 14.279 (3) Å

  • β = 91.98 (3)°

  • V = 1432.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 153 K

  • 0.60 × 0.50 × 0.50 mm

Data collection
  • Stoe IPDS 2T area-detector diffractometer

  • Absorption correction: for a sphere [modification of the interpolation procedure of Dwiggins (1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.])] Tmin = 0.090, Tmax = 0.117

  • 9876 measured reflections

  • 3848 independent reflections

  • 3258 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.088

  • S = 1.11

  • 3848 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (4) 1.79 (3) 2.603 (2) 154 (3)
C9—H9C⋯O1i 0.98 2.47 3.357 (3) 150
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many derivatives of thiazole exhibit pharmacological activities (Coco & Onnis, 1993; Zagade & Senthilkumar, 2011)) and some of them are used as chemotherapeutic agents with anti-inflammatory, analgesic and antipyretic activities (Tanaka et al., 1994). Recently, 2-aminothiazoles were described as a new class of small molecules with antiprion activity in prion-infected neuroblastoma cell lines (Ghaemmaghami et al., 2010). On the other hand, thiocyanates play an important role in the chemistry of organosulfur compounds (Gewald et al., 1994). Among these alkyl 2-thiocyanato phenylketones there are versatile precursors for various substituted thiazoles (Zimmermann et al., 1990). The title compound, C14H15BrN2O2S, has been synthesized by the reaction of 1-(5-bromo-2-hydroxyphenyl)-2-thiocyanatopropan-1-one with morpholine and the structure is reported herein. In this compound (Fig. 1), although an intramolecular hydrogen bond is present between the phenolic O1—H group and N1 of the thiazole ring (Table 1), the benzene and thiazole rings are not coplanar, with a dihedral angle of 23.46 (10) ° between them. The steric influence of the methyl substituent group in the 5-position of the thiazole ring is considered to be responsible for this deviation. In the crystal, only a weak intermolecular C9—H···O1i (phenol) hydrogen-bonding association is present, giving a one-dimensional chain lying parallel to [2 0 -1], while a short Br···O2ii (morpholine) interaction [3.1338 (19) Å] is also found [for symmetry code (ii): x -1, -y + 1/2, z +1/2].

Related literature top

For details of the synthesis, see: Seliger et al. (1997). For a recent review on thiazoles, see: Zagade & Senthilkumar (2011). For the pharmacological activity and applications of thiazole derivatives, see: Ghaemmaghami et al. (2010); Coco & Onnis (1993); Gewald et al. (1994); Tanaka et al. (1994); Zimmermann et al. (1990).

Experimental top

A mixture of 1-(5-bromo-2-hydroxyphenyl)-2-thiocyanatopropan-1-one (0.3 mmol) and morpholine (0.45 mmol) in 50 ml of methanol was heated under reflux for 20 min (Seliger et al., 1997). After 24 h the reaction mixture was poured into water and the precipitate filtered off and dried. Recrystallization from methanol gave the pure product as colorless crystals, m.p. 415 K.

Refinement top

The C-bound H-atoms were included at calculated positions and treated using a riding model, with aromatic C—H = 0.95 Å and methylene C—H = 0.99 Å, and with Uiso(H) = 1.2Ueq(C), or with methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C). The phenolic H-atom (H1) was freely refined.

Structure description top

Many derivatives of thiazole exhibit pharmacological activities (Coco & Onnis, 1993; Zagade & Senthilkumar, 2011)) and some of them are used as chemotherapeutic agents with anti-inflammatory, analgesic and antipyretic activities (Tanaka et al., 1994). Recently, 2-aminothiazoles were described as a new class of small molecules with antiprion activity in prion-infected neuroblastoma cell lines (Ghaemmaghami et al., 2010). On the other hand, thiocyanates play an important role in the chemistry of organosulfur compounds (Gewald et al., 1994). Among these alkyl 2-thiocyanato phenylketones there are versatile precursors for various substituted thiazoles (Zimmermann et al., 1990). The title compound, C14H15BrN2O2S, has been synthesized by the reaction of 1-(5-bromo-2-hydroxyphenyl)-2-thiocyanatopropan-1-one with morpholine and the structure is reported herein. In this compound (Fig. 1), although an intramolecular hydrogen bond is present between the phenolic O1—H group and N1 of the thiazole ring (Table 1), the benzene and thiazole rings are not coplanar, with a dihedral angle of 23.46 (10) ° between them. The steric influence of the methyl substituent group in the 5-position of the thiazole ring is considered to be responsible for this deviation. In the crystal, only a weak intermolecular C9—H···O1i (phenol) hydrogen-bonding association is present, giving a one-dimensional chain lying parallel to [2 0 -1], while a short Br···O2ii (morpholine) interaction [3.1338 (19) Å] is also found [for symmetry code (ii): x -1, -y + 1/2, z +1/2].

For details of the synthesis, see: Seliger et al. (1997). For a recent review on thiazoles, see: Zagade & Senthilkumar (2011). For the pharmacological activity and applications of thiazole derivatives, see: Ghaemmaghami et al. (2010); Coco & Onnis (1993); Gewald et al. (1994); Tanaka et al. (1994); Zimmermann et al. (1990).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, showing thermal ellipsoids drawn at the 50% probability level.
4-Bromo-2-[5-methyl-2-(morpholin-4-yl)-1,3-thiazol-4-yl]phenol top
Crystal data top
C14H15BrN2O2SF(000) = 720
Mr = 355.25Dx = 1.648 Mg m3
Monoclinic, P21/cMelting point: 415 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.026 (2) ÅCell parameters from 13229 reflections
b = 8.3448 (17) Åθ = 2.3–29.5°
c = 14.279 (3) ŵ = 3.02 mm1
β = 91.98 (3)°T = 153 K
V = 1432.1 (5) Å3Prism, colourless
Z = 40.60 × 0.50 × 0.50 mm
Data collection top
Stoe IPDS 2T area-detector
diffractometer
3848 independent reflections
Radiation source: fine-focus sealed tube3258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.8°
rotation method scansh = 1615
Absorption correction: for a sphere
[modification of the interpolation procedure of Dwiggins (1975)]
k = 911
Tmin = 0.090, Tmax = 0.117l = 1919
9876 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1469P]
where P = (Fo2 + 2Fc2)/3
3848 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C14H15BrN2O2SV = 1432.1 (5) Å3
Mr = 355.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.026 (2) ŵ = 3.02 mm1
b = 8.3448 (17) ÅT = 153 K
c = 14.279 (3) Å0.60 × 0.50 × 0.50 mm
β = 91.98 (3)°
Data collection top
Stoe IPDS 2T area-detector
diffractometer
3848 independent reflections
Absorption correction: for a sphere
[modification of the interpolation procedure of Dwiggins (1975)]
3258 reflections with I > 2σ(I)
Tmin = 0.090, Tmax = 0.117Rint = 0.049
9876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.41 e Å3
3848 reflectionsΔρmin = 0.83 e Å3
186 parameters
Special details top

Experimental. Absorption correction: interpolation using International Tables Vol C, Table 6.3.3.3 for values of muR in the range 0-2.5, and International Tables Vol. II, Table 5.3.6 B for µR in the range 2.6-10.0. The interpolation procedure (Dwiggins, 1975) is used with some modification.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.515026 (19)0.18718 (4)0.289067 (16)0.03329 (9)
S1.07362 (5)0.49527 (7)0.18671 (4)0.02323 (12)
N10.97746 (14)0.3026 (2)0.07003 (11)0.0188 (3)
N21.16473 (15)0.3560 (2)0.03586 (13)0.0234 (4)
O10.81067 (15)0.2233 (2)0.04145 (11)0.0267 (3)
H10.878 (3)0.246 (5)0.020 (2)0.046 (10)*
O21.36387 (13)0.2471 (2)0.04068 (13)0.0293 (4)
C10.78829 (17)0.2697 (2)0.12458 (13)0.0177 (4)
C20.74833 (18)0.2161 (2)0.03574 (14)0.0197 (4)
C30.6411 (2)0.1562 (3)0.02405 (15)0.0243 (4)
H30.61520.12160.03620.029*
C40.57136 (19)0.1461 (3)0.09870 (16)0.0246 (4)
H40.49770.10640.09010.030*
C50.61071 (17)0.1947 (3)0.18592 (15)0.0228 (4)
C60.71723 (17)0.2532 (3)0.20010 (14)0.0207 (4)
H60.74280.28260.26140.025*
C70.89932 (17)0.3417 (2)0.13651 (13)0.0175 (4)
C80.93562 (18)0.4462 (3)0.20449 (13)0.0202 (4)
C90.8786 (2)0.5237 (3)0.28400 (15)0.0287 (5)
H9A0.79910.53470.26800.043*
H9B0.91090.62990.29590.043*
H9C0.88850.45740.34030.043*
C101.07224 (17)0.3740 (3)0.08740 (13)0.0192 (4)
C111.16493 (19)0.2173 (3)0.02754 (16)0.0264 (5)
H11A1.09410.21380.06500.032*
H11B1.17120.11730.00960.032*
C121.2614 (2)0.2291 (3)0.09224 (16)0.0306 (5)
H12A1.26430.13120.13130.037*
H12B1.25010.32210.13460.037*
C131.3625 (2)0.3931 (3)0.01061 (19)0.0319 (5)
H13A1.34990.48370.03330.038*
H13B1.43560.40910.04330.038*
C141.27235 (18)0.3918 (3)0.08152 (17)0.0277 (5)
H14A1.28980.31000.13000.033*
H14B1.26910.49760.11270.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.01940 (12)0.04914 (17)0.03197 (13)0.00366 (10)0.01020 (8)0.00066 (10)
S0.0216 (2)0.0252 (3)0.0229 (2)0.0066 (2)0.00275 (18)0.00190 (19)
N10.0156 (8)0.0218 (8)0.0193 (7)0.0014 (7)0.0033 (6)0.0000 (6)
N20.0166 (8)0.0258 (9)0.0283 (8)0.0011 (7)0.0060 (7)0.0003 (7)
O10.0285 (9)0.0336 (9)0.0184 (6)0.0062 (7)0.0059 (6)0.0048 (6)
O20.0178 (7)0.0303 (9)0.0402 (9)0.0059 (7)0.0060 (7)0.0021 (7)
C10.0160 (9)0.0180 (9)0.0192 (8)0.0005 (7)0.0012 (7)0.0009 (7)
C20.0229 (10)0.0171 (9)0.0192 (8)0.0003 (8)0.0026 (7)0.0006 (7)
C30.0262 (11)0.0233 (11)0.0230 (9)0.0043 (8)0.0024 (8)0.0023 (8)
C40.0185 (10)0.0227 (11)0.0325 (10)0.0032 (8)0.0008 (8)0.0027 (8)
C50.0166 (9)0.0269 (10)0.0251 (9)0.0001 (8)0.0052 (7)0.0003 (8)
C60.0172 (9)0.0255 (10)0.0196 (8)0.0008 (8)0.0025 (7)0.0016 (7)
C70.0178 (9)0.0186 (9)0.0162 (8)0.0013 (7)0.0021 (7)0.0016 (7)
C80.0203 (9)0.0220 (9)0.0184 (8)0.0039 (8)0.0030 (7)0.0006 (7)
C90.0338 (12)0.0316 (12)0.0211 (9)0.0071 (10)0.0091 (8)0.0055 (8)
C100.0185 (9)0.0198 (9)0.0193 (8)0.0019 (8)0.0020 (7)0.0027 (7)
C110.0210 (10)0.0330 (12)0.0257 (10)0.0009 (9)0.0062 (8)0.0036 (9)
C120.0223 (11)0.0424 (14)0.0275 (10)0.0093 (10)0.0076 (9)0.0050 (9)
C130.0199 (10)0.0258 (12)0.0506 (14)0.0006 (9)0.0108 (10)0.0054 (10)
C140.0169 (10)0.0257 (11)0.0407 (12)0.0002 (8)0.0047 (9)0.0017 (9)
Geometric parameters (Å, º) top
Br—C51.901 (2)C4—H40.9500
S—C81.736 (2)C5—C61.379 (3)
S—C101.742 (2)C6—H60.9500
N1—C101.302 (3)C7—C81.365 (3)
N1—C71.397 (2)C8—C91.493 (3)
N2—C101.363 (3)C9—H9A0.9800
N2—C141.460 (3)C9—H9B0.9800
N2—C111.470 (3)C9—H9C0.9800
O1—C21.356 (2)C11—C121.511 (3)
O1—H10.88 (4)C11—H11A0.9900
O2—C121.421 (3)C11—H11B0.9900
O2—C131.422 (3)C12—H12A0.9900
C1—C61.406 (3)C12—H12B0.9900
C1—C21.414 (3)C13—C141.509 (3)
C1—C71.469 (3)C13—H13A0.9900
C2—C31.388 (3)C13—H13B0.9900
C3—C41.381 (3)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.378 (3)
C8—S—C1089.99 (10)C8—C9—H9B109.5
C10—N1—C7111.64 (17)H9A—C9—H9B109.5
C10—N2—C14117.64 (18)C8—C9—H9C109.5
C10—N2—C11115.96 (18)H9A—C9—H9C109.5
C14—N2—C11114.56 (18)H9B—C9—H9C109.5
C2—O1—H1105 (2)N1—C10—N2124.91 (19)
C12—O2—C13109.38 (18)N1—C10—S113.85 (14)
C6—C1—C2117.42 (19)N2—C10—S121.22 (17)
C6—C1—C7121.71 (18)N2—C11—C12110.0 (2)
C2—C1—C7120.87 (17)N2—C11—H11A109.7
O1—C2—C3117.13 (19)C12—C11—H11A109.7
O1—C2—C1122.35 (19)N2—C11—H11B109.7
C3—C2—C1120.50 (18)C12—C11—H11B109.7
C4—C3—C2121.0 (2)H11A—C11—H11B108.2
C4—C3—H3119.5O2—C12—C11111.13 (19)
C2—C3—H3119.5O2—C12—H12A109.4
C5—C4—C3118.7 (2)C11—C12—H12A109.4
C5—C4—H4120.6O2—C12—H12B109.4
C3—C4—H4120.6C11—C12—H12B109.4
C4—C5—C6121.68 (19)H12A—C12—H12B108.0
C4—C5—Br119.49 (16)O2—C13—C14111.12 (19)
C6—C5—Br118.81 (16)O2—C13—H13A109.4
C5—C6—C1120.55 (19)C14—C13—H13A109.4
C5—C6—H6119.7O2—C13—H13B109.4
C1—C6—H6119.7C14—C13—H13B109.4
C8—C7—N1115.22 (18)H13A—C13—H13B108.0
C8—C7—C1127.65 (18)N2—C14—C13110.4 (2)
N1—C7—C1117.12 (17)N2—C14—H14A109.6
C7—C8—C9132.3 (2)C13—C14—H14A109.6
C7—C8—S109.29 (15)N2—C14—H14B109.6
C9—C8—S118.36 (16)C13—C14—H14B109.6
C8—C9—H9A109.5H14A—C14—H14B108.1
C6—C1—C2—O1178.6 (2)N1—C7—C8—S1.2 (2)
C7—C1—C2—O12.2 (3)C1—C7—C8—S179.83 (17)
C6—C1—C2—C32.7 (3)C10—S—C8—C70.98 (16)
C7—C1—C2—C3176.49 (19)C10—S—C8—C9177.13 (18)
O1—C2—C3—C4179.3 (2)C7—N1—C10—N2178.48 (19)
C1—C2—C3—C40.6 (3)C7—N1—C10—S0.1 (2)
C2—C3—C4—C50.9 (3)C14—N2—C10—N1157.2 (2)
C3—C4—C5—C60.2 (4)C11—N2—C10—N116.2 (3)
C3—C4—C5—Br178.34 (17)C14—N2—C10—S21.2 (3)
C4—C5—C6—C12.0 (4)C11—N2—C10—S162.21 (16)
Br—C5—C6—C1176.16 (17)C8—S—C10—N10.55 (17)
C2—C1—C6—C53.4 (3)C8—S—C10—N2179.14 (19)
C7—C1—C6—C5175.8 (2)C10—N2—C11—C12169.71 (19)
C10—N1—C7—C80.9 (3)C14—N2—C11—C1248.1 (3)
C10—N1—C7—C1179.61 (18)C13—O2—C12—C1162.9 (3)
C6—C1—C7—C823.9 (3)N2—C11—C12—O254.7 (3)
C2—C1—C7—C8155.3 (2)C12—O2—C13—C1462.7 (3)
C6—C1—C7—N1157.5 (2)C10—N2—C14—C13170.3 (2)
C2—C1—C7—N123.3 (3)C11—N2—C14—C1348.2 (3)
N1—C7—C8—C9176.5 (2)O2—C13—C14—N254.7 (3)
C1—C7—C8—C92.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (4)1.79 (3)2.603 (2)154 (3)
C9—H9C···O1i0.982.473.357 (3)150
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15BrN2O2S
Mr355.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)12.026 (2), 8.3448 (17), 14.279 (3)
β (°) 91.98 (3)
V3)1432.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.60 × 0.50 × 0.50
Data collection
DiffractometerStoe IPDS 2T area-detector
Absorption correctionFor a sphere
[modification of the interpolation procedure of Dwiggins (1975)]
Tmin, Tmax0.090, 0.117
No. of measured, independent and
observed [I > 2σ(I)] reflections
9876, 3848, 3258
Rint0.049
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.11
No. of reflections3848
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.83

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (4)1.79 (3)2.603 (2)154 (3)
C9—H9C···O1i0.982.473.357 (3)150
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Part of this work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI, project No. 51/2012.

References

First citationCoco, M. T. & Onnis, V. (1993). Synthesis, pp. 199–201.  Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationGewald, K., Hain, U., Schindler, R. & Gruner, M. (1994). Monatsh. Chem. 125, 1129–1143.  CrossRef CAS Web of Science Google Scholar
First citationGhaemmaghami, S., May, B. C. H., Renslo, A. R. & Prusiner, S. B. (2010). J. Virol. 84, 3408–3412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeliger, H., Happ, E., Cascaval, A., Birsa, M. L. & Novitschi, G. (1997). An. St. Univ. Al. I. Cuza Iasi, 5, 123–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanaka, A., Sakai, H., Motoyama, Y., Ishikawa, T. & Takasugi, H. (1994). J. Med. Chem. 37, 1189–1199.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZagade, A. A. & Senthilkumar, G. P. (2011). Pharma Chem. 3, 523–537.  CAS Google Scholar
First citationZimmermann, T., Fischer, G. W., Teller, J., Dehne, H. & Olk, B. (1990). J. Prakt. Chem. 332, 723–730.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds