

Acta Crystallographica Section E **Structure Reports** Online ISSN 1600-5368

4-Chlorobutyl 7-chloro-1-cyclopropyl-4-(1.3-diethyl-4.6-dioxo-2-sulfanylidene-1,3-diazinan-5-ylidene)-6-fluoro-1,4-dihydroquinoline-3-carboxylate

Kamal Sweidan,^a Salim F. Haddad,^a* Murad A. AlDamen^a and Ahmed Al-Sheikhb^b

^aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and ^bFaculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia Correspondence e-mail: hadsal2003@yahoo.com

Received 22 April 2013; accepted 8 June 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.078; wR factor = 0.230; data-to-parameter ratio = 14.4.

The title compound, C₂₅H₂₆Cl₂FN₃O₄S, contains two bioactive moieties (thiobarbituric acid and fluoroquinolone). In the crystal, molecules are linked via $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonds, forming two-dimensional slab-like networks lying parallel to the bc plane. The benzene ring substituted by F and Cl atoms and the 4-chlorobutyl group seem to be partly disordered, however attempts to model the disorder were unsuccessful.

Related literature

For the biological activity of fluoroquinolone derivatives, see: Li et al. (2000); Baker et al. (2004); Mitscher (2005). For the crystal structures of some fluoroquinolone and 1,3-diethyl-2thiobarbituric acid derivatives, see: Al-Qawasmeh (2012); Sweidan et al. (2012); Shishkin et al. (1997).

12511 measured reflections

 $R_{\rm int} = 0.047$

4664 independent reflections

2477 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$V = 5278.3 (7) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.37 \text{ mm}^{-1}$
T = 293 K
$0.30 \times 0.15 \times 0.06 \text{ mm}$

Data collection

Agilent Xcalibur Eos diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.606, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$	325 parameters
$wR(F^2) = 0.230$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
4664 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C18-H18 A O2 ⁱ	0.98	2.32	3.014 (6)	127
C20-H20 A O3 ⁱⁱ	0.97	2.56	3.233 (6)	126
C25-H25 A F1 ⁱⁱⁱ	0.97	2.51	3.371 (10)	148

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) x, y + 1, z.

Data collection: CrvsAlis PRO (Agilent, 2011): cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the Deanship of Scientific Research at the University of Jordan. The X-ray structural work was done at the Hamdi Mango Center for Scientific Research of The University of Jordan, Amman 11942, Jordan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2478).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Al-Qawasmeh, R. A. (2012). Acta Cryst. E68, o2533.

- Baker, W. R., Cai, S. P., Dimitroff, M., Fang, L. M., Huh, K. K., Ryckman, D. R., Shang, X., Shawar, R. M. & Therrien, J. H. (2004). J. Med. Chem. 47, 4693-4709
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231-293.

- Mitscher, L. A. (2005). Chem. Rev. 105, 559-592.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shishkin, O. V., Solomovich, E. V., Vakula, V. M. & Yaremenko, F. G. (1997). Russ. Chem. Bull. 46, 1838-1843.
- Sweidan, K., AlDamen, M. A., Maichle-Möll, C. & Mubarak, M. S. (2012). J. Chem. Crystallogr. 42, 427-431.

supporting information

Acta Cryst. (2013). E69, o1191 [doi:10.1107/S1600536813016024]

4-Chlorobutyl 7-chloro-1-cyclopropyl-4-(1,3-diethyl-4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ylidene)-6-fluoro-1,4-dihydroquinoline-3-carboxylate

Kamal Sweidan, Salim F. Haddad, Murad A. AlDamen and Ahmed Al-Sheikhb

S1. Comment

A vast number of fluoroquinolones (Baker *et al.*, 2004) such as ciprofloxacin and moxifloxacin have therapeutic efficacy as anti-infective agents (Li *et al.*, 2000; Mitscher, 2005). The prepared molecule contains two bio-active moieties (thio-barbituric acid and fluoroquinolone), which may have a high impact biological effect.

From the X-ray structural analysis, it is interesting to note that this structure presents some zwitterionic character, since the bond length for C3—C10 is 1.449 (5) Å, intermediate between carbon-carbon single bond and double bond, while bond angles around C10 are close to 120° : C13—C10—C11 = 119.8 (4), C11—C10—C3 = 120.5 (4), and C13—C10—C3 = 119.5 (4)°. The crystal structure reveals the negative charge to be localized at the thiobarbituric-acid ring, with a contribution of the enolate form [C10—C11 = 1.418 (6), C10—C13 = 1.406 (6), C11—O1 = 1.231 (5), C13—O2 = 1.229 (5) Å; see Sweidan *et al.*, 2012]. The carbon-sulfur bond length is 1.665 (5) Å, which is close to that observed in a 2-thioxo-1,2,3,4-tetrahydropyrimidine derivative [1.673 (9) Å, Shishkin *et al.*, 1997; see also Al-Qawasmeh, 2012].

The displacement parameters in the 4-chlorobutyl branch are rather high, indicating, together with residual electron density in the vicinity, some degree of disorder. For example, C22—C23 bond length, 1.402 (9) Å, is a bit short for a single C—C bond. After convergence, it seems that benzene ring substituted by F1 and Cl1 could also be partly disordered. However, attempts to model such disordered parts did not improve the picture.

S2. Experimental

The title compound was prepared as followed: 8 ml of thionyl chloride was added to a solution containing 1.5 g (5.3 mmol) of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid in 15 ml of dry THF. The resulting solution was refluxed for 6 h, then cooled, and evaporated under reduced pressure to remove the excess thionyl chloride. To the resulting residue, a solution of 1,3-diethyl-2-thiobarbituric acid (1.19 g, 6.0 mmol) and 1.5 ml (10.0 mmol) of dry triethylamine in 20 ml of dry THF were added, at room temperature. After stirring overnight, the resulting precipitate was filtered off, washed with H_2O/THF (1:2), and dried under reduced pressure. Yield: 1.5 g (51%). This solid was recrystallized from dichloromethane/diethylether, affording brownish crystals. A flat elongated crystal was mounted and data collected using five omega scans and a total of 277 frames with an exposure time of 76 s per frame.

S3. Refinement

All non-H atoms were refined anisotropically. H atoms were positioned geometrically, with C—H = 0.93 (aromatic CH), 0.96 (methyl CH₃), 0.97 (methylene CH₂), or 0.98 Å (methine CH), and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(\text{carrier atoms})$ for methyl groups and $1.2U_{eq}(\text{carrier atoms})$ otherwise. Highest difference peak and hole in the last difference map are 0.58 and -0.40 e/Å³, respectively.

Figure 1

ORTEP drawing showing the molecular conformation of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen atoms are represented as small spheres of arbitrary radii.

4-Chlorobutyl 7-chloro-1-cyclopropyl-4-(1,3-diethyl-4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ylidene)-6-fluoro-1,4-dihydroquinoline-3-carboxylate

Crystal data	
$C_{25}H_{26}Cl_2FN_3O_4S$	F(000) = 2304
$M_r = 554.45$	$D_{\rm x} = 1.395 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
Hall symbol: -C 2yc	Cell parameters from 2598 reflections
a = 24.3035 (15) Å	$\theta = 2.9 - 29.0^{\circ}$
b = 13.8310 (8) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 16.4507 (16) Å	T = 293 K
$\beta = 107.345 \ (8)^{\circ}$	Parallelpiped, orange
V = 5278.3 (7) Å ³	$0.30 \times 0.15 \times 0.06 \text{ mm}$
Z = 8	
Data collection	
Agilent Xcalibur Eos	12511 measured reflections
diffractometer	4664 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2477 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.047$
Detector resolution: 16.0534 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
ω scans	$h = -28 \rightarrow 22$
Absorption correction: multi-scan	$k = -16 \rightarrow 16$
(CrysAlis PRO; Agilent, 2011)	$l = -19 \rightarrow 18$
$T_{\min} = 0.606, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.078$	Hydrogen site location: inferred from
$wR(F^2) = 0.230$	neighbouring sites
S = 1.02	H-atom parameters constrained
4664 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1011P)^2 + 5.5588P]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
0 constraints	$\Delta \rho_{\rm max} = 0.58 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
direct methods	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.24101 (6)	0.17120 (14)	0.14821 (12)	0.0943 (6)	
C11	-0.19348 (8)	0.14374 (13)	0.09519 (18)	0.1377 (10)	
C12	0.08427 (9)	1.00624 (14)	0.18342 (15)	0.1267 (8)	
F1	-0.07857 (15)	0.0682 (2)	0.1166 (3)	0.1128 (14)	
01	0.03572 (14)	0.2291 (3)	0.0014 (2)	0.0712 (11)	
O2	0.12679 (13)	0.4217 (2)	0.2354 (2)	0.0586 (9)	
03	0.08993 (13)	0.5366 (2)	0.0784 (2)	0.0578 (9)	
O4	0.06525 (13)	0.6089 (2)	0.1858 (2)	0.0612 (10)	
N1	-0.08816 (13)	0.4624 (2)	0.1034 (2)	0.0369 (8)	
N2	0.12960 (16)	0.2031 (3)	0.0780 (2)	0.0483 (10)	
N3	0.17566 (15)	0.3066 (3)	0.1881 (2)	0.0531 (11)	
C1	-0.08558 (17)	0.3631 (3)	0.1035 (3)	0.0405 (10)	
C2	-0.03227 (17)	0.3163 (3)	0.1127 (3)	0.0390 (10)	
C3	0.01920 (16)	0.3715 (3)	0.1196 (2)	0.0374 (10)	
C4	0.01378 (17)	0.4713 (3)	0.1244 (3)	0.0377 (10)	
C5	-0.03978 (18)	0.5125 (3)	0.1162 (3)	0.0401 (10)	
H5A	-0.0418	0.5794	0.1200	0.048*	
C6	-0.1360 (2)	0.3092 (3)	0.0963 (3)	0.0552 (13)	
H6A	-0.1710	0.3405	0.0887	0.066*	
C7	-0.1331 (2)	0.2110 (4)	0.1008 (4)	0.0736 (17)	
C8	-0.0802(2)	0.1650 (4)	0.1120 (4)	0.0724 (17)	
C9	-0.0314 (2)	0.2151 (3)	0.1193 (3)	0.0582 (14)	
H9A	0.0033	0.1821	0.1287	0.070*	
C10	0.07331 (17)	0.3246 (3)	0.1239 (3)	0.0401 (10)	
C11	0.07575 (18)	0.2519 (3)	0.0643 (3)	0.0462 (11)	
C12	0.1791 (2)	0.2288 (4)	0.1375 (3)	0.0516 (12)	
C13	0.12424 (17)	0.3552 (3)	0.1849 (3)	0.0434 (11)	
C14	0.1290 (2)	0.1194 (4)	0.0207 (4)	0.0677 (15)	
H14A	0.1561	0.0711	0.0517	0.081*	
H14B	0.0909	0.0905	0.0041	0.081*	
C15	0.1443 (3)	0.1470 (4)	-0.0569 (4)	0.092 (2)	
H15A	0.1433	0.0907	-0.0915	0.138*	
H15B	0.1823	0.1743	-0.0409	0.138*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H15C	0.1171	0.1938	-0.0886	0.138*
C16	0.2289 (2)	0.3434 (5)	0.2500 (4)	0.0736 (17)
H16A	0.2564	0.2910	0.2675	0.088*
H16B	0.2200	0.3671	0.3001	0.088*
C17	0.2549 (3)	0.4222 (6)	0.2130 (5)	0.107 (2)
H17A	0.2893	0.4446	0.2545	0.161*
H17B	0.2279	0.4746	0.1965	0.161*
H17C	0.2643	0.3985	0.1639	0.161*
C18	-0.14249 (17)	0.5130 (3)	0.0928 (3)	0.0437 (11)
H18A	-0.1549	0.5188	0.1441	0.052*
C19	-0.1571 (2)	0.5954 (4)	0.0329 (3)	0.0594 (14)
H19A	-0.1768	0.6502	0.0484	0.071*
H19B	-0.1302	0.6116	0.0016	0.071*
C20	-0.1889 (2)	0.5045 (4)	0.0120 (3)	0.0610 (14)
H20A	-0.1817	0.4647	-0.0324	0.073*
H20B	-0.2283	0.5032	0.0144	0.073*
C21	0.06135 (18)	0.5399 (3)	0.1271 (3)	0.0455 (11)
C22	0.1124 (3)	0.6771 (5)	0.1981 (5)	0.094 (2)
H22A	0.1302	0.6866	0.2587	0.113*
H22B	0.1412	0.6496	0.1749	0.113*
C23	0.0952 (3)	0.7671 (6)	0.1597 (6)	0.130 (3)
H23A	0.0825	0.7578	0.0985	0.156*
H23B	0.1288	0.8087	0.1728	0.156*
C24	0.0490 (3)	0.8188 (5)	0.1840 (6)	0.112 (2)
H24A	0.0610	0.8283	0.2452	0.134*
H24B	0.0146	0.7789	0.1694	0.134*
C25	0.0342 (4)	0.9178 (6)	0.1395 (6)	0.145 (4)
H25A	-0.0032	0.9385	0.1429	0.174*
H25B	0.0314	0.9106	0.0798	0.174*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0580 (9)	0.1077 (14)	0.1167 (15)	0.0380 (9)	0.0255 (9)	-0.0067 (10)
Cl1	0.0780 (11)	0.0645 (11)	0.284 (3)	-0.0280 (9)	0.0751 (15)	-0.0082 (14)
Cl2	0.1264 (17)	0.0849 (14)	0.161 (2)	-0.0058 (12)	0.0313 (15)	0.0051 (12)
F1	0.094 (3)	0.0357 (18)	0.222 (5)	-0.0059 (17)	0.067 (3)	0.003 (2)
01	0.052 (2)	0.082 (3)	0.072 (3)	0.0024 (19)	0.0056 (19)	-0.036 (2)
O2	0.0491 (19)	0.075 (2)	0.043 (2)	0.0087 (17)	0.0004 (16)	-0.0185 (17)
03	0.0477 (18)	0.070 (2)	0.060 (2)	-0.0072 (17)	0.0225 (17)	-0.0007 (17)
O4	0.0503 (19)	0.046 (2)	0.090 (3)	-0.0131 (16)	0.0254 (19)	-0.0231 (18)
N1	0.0313 (18)	0.036 (2)	0.045 (2)	0.0007 (16)	0.0143 (16)	-0.0002 (16)
N2	0.048 (2)	0.042 (2)	0.061 (3)	0.0062 (18)	0.027 (2)	-0.0024 (18)
N3	0.035 (2)	0.073 (3)	0.047 (2)	0.0094 (19)	0.0070 (18)	-0.008(2)
C1	0.038 (2)	0.039 (3)	0.046 (3)	-0.003 (2)	0.017 (2)	-0.002 (2)
C2	0.038 (2)	0.037 (2)	0.043 (3)	0.003 (2)	0.012 (2)	-0.0028 (19)
C3	0.035 (2)	0.042 (3)	0.035 (2)	0.001 (2)	0.0089 (19)	-0.0015 (18)
C4	0.036 (2)	0.040 (3)	0.038 (3)	-0.001 (2)	0.0111 (19)	-0.0021 (18)

C5	0.043 (2)	0.037 (2)	0.042 (3)	-0.002 (2)	0.015 (2)	-0.0022 (19)
C6	0.042 (3)	0.046 (3)	0.080 (4)	-0.003 (2)	0.022 (3)	-0.003 (2)
C7	0.057 (3)	0.051 (3)	0.120 (5)	-0.016 (3)	0.036 (3)	-0.009 (3)
C8	0.065 (4)	0.036 (3)	0.126 (5)	0.000 (3)	0.044 (4)	0.000 (3)
C9	0.051 (3)	0.042 (3)	0.086 (4)	0.005 (2)	0.027 (3)	0.004 (2)
C10	0.038 (2)	0.041 (3)	0.041 (3)	0.003 (2)	0.012 (2)	-0.0051 (19)
C11	0.039 (2)	0.046 (3)	0.056 (3)	0.003 (2)	0.018 (2)	-0.005 (2)
C12	0.046 (3)	0.059 (3)	0.052 (3)	0.009 (2)	0.018 (2)	0.003 (2)
C13	0.037 (2)	0.056 (3)	0.037 (3)	0.005 (2)	0.011 (2)	-0.004(2)
C14	0.069 (3)	0.049 (3)	0.092 (4)	-0.001 (3)	0.035 (3)	-0.021 (3)
C15	0.118 (5)	0.074 (4)	0.106 (5)	-0.016 (4)	0.066 (4)	-0.034 (4)
C16	0.044 (3)	0.108 (5)	0.057 (4)	0.010 (3)	-0.003 (3)	-0.010 (3)
C17	0.070 (4)	0.130 (6)	0.105 (6)	-0.020 (4)	0.001 (4)	-0.013 (5)
C18	0.035 (2)	0.050 (3)	0.049 (3)	0.008 (2)	0.017 (2)	0.006 (2)
C19	0.046 (3)	0.060 (3)	0.077 (4)	0.014 (3)	0.026 (3)	0.024 (3)
C20	0.038 (3)	0.073 (4)	0.071 (4)	0.010 (3)	0.014 (3)	0.005 (3)
C21	0.037 (2)	0.047 (3)	0.051 (3)	-0.001(2)	0.011 (2)	0.000 (2)
C22	0.067 (4)	0.065 (4)	0.145 (7)	-0.019 (3)	0.023 (4)	-0.037 (4)
C23	0.068 (5)	0.105 (6)	0.203 (9)	-0.009 (5)	0.019 (5)	0.021 (6)
C24	0.088 (5)	0.091 (5)	0.150 (7)	-0.004 (4)	0.027 (5)	-0.002 (5)
C25	0.119 (7)	0.102 (6)	0.170 (9)	-0.009 (5)	-0.022 (6)	-0.002 (6)

Geometric parameters (Å, °)

S1—C12	1.665 (5)	C10—C11	1.418 (6)
Cl1—C7	1.717 (5)	C14—C15	1.481 (8)
Cl2—C25	1.725 (7)	C14—H14A	0.9700
F1—C8	1.341 (6)	C14—H14B	0.9700
01—C11	1.231 (5)	C15—H15A	0.9600
O2—C13	1.229 (5)	C15—H15B	0.9600
O3—C21	1.208 (5)	C15—H15C	0.9600
O4—C21	1.340 (5)	C16—C17	1.479 (8)
O4—C22	1.451 (6)	C16—H16A	0.9700
N1-C5	1.326 (5)	C16—H16B	0.9700
N1-C1	1.375 (5)	C17—H17A	0.9600
N1-C18	1.458 (5)	C17—H17B	0.9600
N2-C12	1.352 (6)	C17—H17C	0.9600
N2-C11	1.429 (5)	C18—C20	1.469 (6)
N2-C14	1.491 (6)	C18—C19	1.479 (6)
N3—C12	1.379 (6)	C18—H18A	0.9800
N3—C13	1.406 (5)	C19—C20	1.462 (7)
N3—C16	1.477 (6)	C19—H19A	0.9700
C1—C6	1.409 (6)	C19—H19B	0.9700
C1—C2	1.415 (5)	C20—H20A	0.9700
С2—С9	1.404 (6)	C20—H20B	0.9700
С2—С3	1.441 (5)	C22—C23	1.402 (9)
C3—C4	1.391 (6)	C22—H22A	0.9700
C3—C10	1.449 (5)	C22—H22B	0.9700

C4—C5	1.390 (5)	C23—C24	1.484 (10)
C4—C21	1.486 (6)	С23—Н23А	0.9700
C5—H5A	0.9300	С23—Н23В	0.9700
С6—С7	1.361 (7)	C24—C25	1.544 (10)
С6—Н6А	0.9300	C24—H24A	0.9700
C7—C8	1.396 (7)	C24—H24B	0.9700
C8—C9	1.348 (7)	С25—Н25А	0.9700
С9—Н9А	0.9300	С25—Н25В	0.9700
C10—C13	1.406 (6)		
C21—O4—C22	116.5 (4)	H15A—C15—H15C	109.5
C5—N1—C1	118.9 (3)	H15B—C15—H15C	109.5
C5—N1—C18	119.8 (3)	N3—C16—C17	111.4 (5)
C1—N1—C18	121.3 (3)	N3—C16—H16A	109.4
C12—N2—C11	124.5 (4)	C17—C16—H16A	109.4
C12—N2—C14	120.0 (4)	N3—C16—H16B	109.4
C11—N2—C14	115.5 (4)	C17—C16—H16B	109.4
C12—N3—C13	124.3 (4)	H16A—C16—H16B	108.0
C12—N3—C16	119.1 (4)	C16—C17—H17A	109.5
C13—N3—C16	116.6 (4)	C16—C17—H17B	109.5
N1—C1—C6	119.4 (4)	H17A—C17—H17B	109.5
N1—C1—C2	119.8 (4)	C16—C17—H17C	109.5
C6—C1—C2	120.8 (4)	H17A—C17—H17C	109.5
C9—C2—C1	117.2 (4)	H17B—C17—H17C	109.5
C9—C2—C3	122.0 (4)	N1—C18—C20	119.5 (4)
C1—C2—C3	120.8 (4)	N1—C18—C19	118.6 (4)
C4—C3—C2	115.8 (3)	C20—C18—C19	59.5 (3)
C4—C3—C10	122.8 (4)	N1—C18—H18A	115.9
C2—C3—C10	121.3 (4)	C20—C18—H18A	115.9
C5—C4—C3	120.2 (4)	C19—C18—H18A	115.9
C5—C4—C21	116.0 (4)	C20—C19—C18	59.9 (3)
C3—C4—C21	123.3 (4)	С20—С19—Н19А	117.8
N1—C5—C4	124.1 (4)	C18—C19—H19A	117.8
N1—C5—H5A	117.9	C20—C19—H19B	117.8
С4—С5—Н5А	117.9	C18—C19—H19B	117.8
C7—C6—C1	119.6 (4)	H19A—C19—H19B	114.9
С7—С6—Н6А	120.2	C19—C20—C18	60.6 (3)
С1—С6—Н6А	120.2	C19—C20—H20A	117.7
C6—C7—C8	119.6 (5)	C18—C20—H20A	117.7
C6—C7—C11	120.5 (4)	C19—C20—H20B	117.7
C8—C7—C11	119.9 (4)	C18—C20—H20B	117.7
F1—C8—C9	119.8 (5)	H20A—C20—H20B	114.8
F1—C8—C7	118.3 (5)	O3—C21—O4	125.1 (4)
C9—C8—C7	121.9 (5)	O3—C21—C4	123.4 (4)
C8—C9—C2	120.9 (4)	O4—C21—C4	111.3 (4)
С8—С9—Н9А	119.6	C23—C22—O4	113.5 (6)
С2—С9—Н9А	119.6	C23—C22—H22A	108.9
C13—C10—C11	119.8 (4)	O4—C22—H22A	108.9

C13—C10—C3	119.5 (4)	С23—С22—Н22В	108.9
C11—C10—C3	120.5 (4)	O4—C22—H22B	108.9
O1—C11—C10	125.3 (4)	H22A—C22—H22B	107.7
O1—C11—N2	118.0 (4)	C22—C23—C24	117.0 (8)
C10—C11—N2	116.8 (4)	С22—С23—Н23А	108.1
N2—C12—N3	116.2 (4)	C24—C23—H23A	108.1
N2—C12—S1	122.2 (4)	С22—С23—Н23В	108.1
N3—C12—S1	121.7 (4)	C24—C23—H23B	108.1
O2—C13—N3	117.9 (4)	H23A—C23—H23B	107.3
O2—C13—C10	124.4 (4)	C23—C24—C25	112.8 (7)
N3—C13—C10	117.8 (4)	C23—C24—H24A	109.0
C_{15} C_{14} N_{2}	112.8 (4)	C25—C24—H24A	109.0
C15 - C14 - H14A	109.0	C23—C24—H24B	109.0
N2-C14-H14A	109.0	$C_{25} - C_{24} - H_{24B}$	109.0
C15-C14-H14B	109.0	$H_{24} - C_{24} + H_{24}B$	107.8
N2-C14-H14B	109.0	C_{24} C_{25} C_{12}	113 3 (6)
$H_{14} - C_{14} - H_{14}B$	107.8	C_{24} C_{25} H_{25A}	108.9
C14 $C15$ $H154$	109.5	C_{12} C_{25} H_{25A}	108.9
C14 - C15 - H15R	109.5	$C_{22} = C_{23} = H_{25}R$	108.9
H15A C15 H15B	109.5	$C_{12} = C_{25} = H_{25B}$	108.9
C14-C15-H15C	109.5	$H_{25} = C_{25} = H_{25} = H_{25}$	107.7
	109.5	112574 025 11250	107.7
C5—N1—C1—C6	175.2 (4)	C12—N2—C11—O1	171.1 (5)
$C_{18} = N_{1} = C_{1} = C_{6}$	-2.4(6)	C14 - N2 - C11 - O1	-8.3(6)
$C_{5}-N_{1}-C_{1}-C_{2}$	-3.3(6)	C_{12} N_{2} C_{11} C_{10}	-7.7(6)
C18 - N1 - C1 - C2	179.1 (4)	C14 - N2 - C11 - C10	173.0 (4)
N1-C1-C2-C9	175.0 (4)	$C_{11} - N_2 - C_{12} - N_3$	1.1 (7)
C6-C1-C2-C9	-3.5(6)	C14 - N2 - C12 - N3	-179.6(4)
N1-C1-C2-C3	-1.8(6)	$C_{11} - N_{2} - C_{12} - S_{1}$	-177.9(3)
C6-C1-C2-C3	179.7 (4)	C14 - N2 - C12 - S1	1.4 (6)
C9—C2—C3—C4	-171.0(4)	C_{13} N3 $-C_{12}$ N2	4.1 (7)
C1-C2-C3-C4	5.6 (6)	C16-N3-C12-N2	-175.3(4)
C9—C2—C3—C10	7.2 (6)	C13 - N3 - C12 - S1	-176.8(4)
C1-C2-C3-C10	-176.3 (4)	C16—N3—C12—S1	3.7 (7)
C2-C3-C4-C5	-4.6 (6)	C12 - N3 - C13 - O2	177.8 (4)
C10—C3—C4—C5	177.3 (4)	C16—N3—C13—O2	-2.7 (6)
C2—C3—C4—C21	-176.7 (4)	C12—N3—C13—C10	-2.3(7)
C10—C3—C4—C21	5.2 (6)	C16—N3—C13—C10	177.1 (4)
C1—N1—C5—C4	4.5 (6)	C11—C10—C13—O2	175.2 (4)
C18—N1—C5—C4	-177.9 (4)	C3—C10—C13—O2	-1.3(7)
C3—C4—C5—N1	-0.3 (6)	C11—C10—C13—N3	-4.7 (6)
C21—C4—C5—N1	172.3 (4)	C3—C10—C13—N3	178.8 (4)
N1—C1—C6—C7	-176.7 (5)	C12—N2—C14—C15	-87.5 (6)
C2-C1-C6-C7	1.8 (7)	C11—N2—C14—C15	91.9 (6)
C1—C6—C7—C8	-0.2 (9)	C12—N3—C16—C17	92.7 (6)
C1—C6—C7—Cl1	178.2 (4)	C13—N3—C16—C17	-86.8 (6)
C6—C7—C8—F1	179.6 (5)	C5—N1—C18—C20	117.2 (5)
Cl1—C7—C8—F1	1.2 (8)	C1—N1—C18—C20	-65.2 (5)

C6—C7—C8—C9	0.5 (10)	C5—N1—C18—C19	48.1 (6)
C11—C7—C8—C9	-178.0 (5)	C1—N1—C18—C19	-134.3 (5)
F1—C8—C9—C2	178.6 (5)	N1—C18—C19—C20	109.3 (5)
C7—C8—C9—C2	-2.3 (9)	N1—C18—C20—C19	-107.7 (4)
C1—C2—C9—C8	3.8 (7)	C22—O4—C21—O3	-8.1 (7)
C3-C2-C9-C8	-179.5 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176.5 (4)
C4-C3-C10-C13	43.7 (6)		-123.8 (5)
C2-C3-C10-C13	-134.2 (4)		48.6 (7)
C4-C3-C10-C11	-132.7 (5)		51.7 (5)
C2-C3-C10-C11	49.3 (6)		-135.9 (4)
C13-C10-C11-O1	-169.4 (5)		102.8 (7)
C3-C10-C11-O1	7.0 (7)	04—C22—C23—C24	55.7 (10)
C13-C10-C11-N2	9.3 (6)	C22—C23—C24—C25	178.9 (7)
C3-C10-C11-N2	-174.3 (4)	C23—C24—C25—Cl2	-76.6 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C18—H18A····O2 ⁱ	0.98	2.32	3.014 (6)	127
C20—H20A···O3 ⁱⁱ	0.97	2.56	3.233 (6)	126
C25—H25A…F1 ⁱⁱⁱ	0.97	2.51	3.371 (10)	148

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) -*x*, -*y*+1, -*z*; (iii) *x*, *y*+1, *z*.