[Journal logo]

Volume 69 
Part 8 
Page o1191  
August 2013  

Received 22 April 2013
Accepted 8 June 2013
Online 3 July 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.007 Å
R = 0.078
wR = 0.230
Data-to-parameter ratio = 14.4
Details
Open access

4-Chlorobutyl 7-chloro-1-cyclopropyl-4-(1,3-diethyl-4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ylidene)-6-fluoro-1,4-dihydroquinoline-3-carboxylate

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and bFaculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
Correspondence e-mail: hadsal2003@yahoo.com

The title compound, C25H26Cl2FN3O4S, contains two bio-active moieties (thiobarbituric acid and fluoroquinolone). In the crystal, molecules are linked via C-H...O and C-H...F hydrogen bonds, forming two-dimensional slab-like networks lying parallel to the bc plane. The benzene ring substituted by F and Cl atoms and the 4-chlorobutyl group seem to be partly disordered, however attempts to model the disorder were unsuccessful.

Related literature

For the biological activity of fluoroquinolone derivatives, see: Li et al. (2000[Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231-293.]); Baker et al. (2004[Baker, W. R., Cai, S. P., Dimitroff, M., Fang, L. M., Huh, K. K., Ryckman, D. R., Shang, X., Shawar, R. M. & Therrien, J. H. (2004). J. Med. Chem. 47, 4693-4709.]); Mitscher (2005[Mitscher, L. A. (2005). Chem. Rev. 105, 559-592.]). For the crystal structures of some fluoroquinolone and 1,3-diethyl-2-thiobarbituric acid derivatives, see: Al-Qawasmeh (2012[Al-Qawasmeh, R. A. (2012). Acta Cryst. E68, o2533.]); Sweidan et al. (2012[Sweidan, K., AlDamen, M. A., Maichle-Mö\, C. & Mubarak, M. S. (2012). J. Chem. Crystallogr. 42, 427-431.]); Shishkin et al. (1997[Shishkin, O. V., Solomovich, E. V., Vakula, V. M. & Yaremenko, F. G. (1997). Russ. Chem. Bull. 46, 1838-1843.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26Cl2FN3O4S

  • Mr = 554.45

  • Monoclinic, C 2/c

  • a = 24.3035 (15) Å

  • b = 13.8310 (8) Å

  • c = 16.4507 (16) Å

  • [beta] = 107.345 (8)°

  • V = 5278.3 (7) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.37 mm-1

  • T = 293 K

  • 0.30 × 0.15 × 0.06 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.606, Tmax = 1.000

  • 12511 measured reflections

  • 4664 independent reflections

  • 2477 reflections with I > 2[sigma](I)

  • Rint = 0.047

Refinement
  • R[F2 > 2[sigma](F2)] = 0.078

  • wR(F2) = 0.230

  • S = 1.02

  • 4664 reflections

  • 325 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.58 e Å-3

  • [Delta][rho]min = -0.40 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C18-H18A...O2i 0.98 2.32 3.014 (6) 127
C20-H20A...O3ii 0.97 2.56 3.233 (6) 126
C25-H25A...F1iii 0.97 2.51 3.371 (10) 148
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2478 ).


Acknowledgements

The authors gratefully acknowledge financial support from the Deanship of Scientific Research at the University of Jordan. The X-ray structural work was done at the Hamdi Mango Center for Scientific Research of The University of Jordan, Amman 11942, Jordan.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Al-Qawasmeh, R. A. (2012). Acta Cryst. E68, o2533.  [CSD] [CrossRef] [IUCr Journals]
Baker, W. R., Cai, S. P., Dimitroff, M., Fang, L. M., Huh, K. K., Ryckman, D. R., Shang, X., Shawar, R. M. & Therrien, J. H. (2004). J. Med. Chem. 47, 4693-4709.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231-293.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Mitscher, L. A. (2005). Chem. Rev. 105, 559-592.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Shishkin, O. V., Solomovich, E. V., Vakula, V. M. & Yaremenko, F. G. (1997). Russ. Chem. Bull. 46, 1838-1843.  [Web of Science] [CrossRef] [ChemPort]
Sweidan, K., AlDamen, M. A., Maichle-Mö\, C. & Mubarak, M. S. (2012). J. Chem. Crystallogr. 42, 427-431.


Acta Cryst (2013). E69, o1191  [ doi:10.1107/S1600536813016024 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.