[Journal logo]

Volume 69 
Part 8 
Page i52  
August 2013  

Received 8 May 2013
Accepted 15 July 2013
Online 24 July 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](P-O) = 0.006 Å
R = 0.046
wR = 0.126
Data-to-parameter ratio = 26.6
Details
Open access

RbCuFe(PO4)2

aFaculty of Science, University of Monastir, 5019 Monastir, Tunisia
Correspondence e-mail: mourad_hidouri@yahoo.fr

A new iron phosphate, rubidium copper(II) iron(III) bis(phosphate), RbCuFe(PO4)2, has been synthesized as single crystals by the flux method. This compound is isostructural with KCuFe(PO4)2 [Badri et al. (2011[Badri, A., Hidouri, M., Lopez, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937-944.]), J. Solid State Chem. 184, 937-944]. Its structure is built up from Cu2O8 units of edge-sharing CuO5 polyhedra, interconnected by FeO6 octahedra through common corners to form undulating chains that extend infinitely along the [011] and [01-1] directions. The linkage of such chains is ensured by the PO4 tetraedra and the resulting three-dimensional framework forms quasi-elliptic tunnels parallel to the [101] direction in which the Rb+ cations are located.

Related literature

For the physical properties of iron phosphates, see: Elbouaanani et al. (2002[Elbouaanani, L. K., Malaman, B., Gerardin, R. & Ijjaali, M. (2002). J. Solid State Chem. 163, 412-944.]). For the structural chemistry of iron phosphates, see: Moore (1970[Moore, P. B. (1970). Am. Mineral. 55, 135-169.]); Gleitzer (1991[Gleitzer, C. (1991). Eur. J. Solid State Inorg. Chem. 28, 77-91.]). For rubidium iron phosphates, see: Hidouri et al. (2010[Hidouri, M., Wattiaux, A., Lopez, M. L., Pico, C. & Amara, M. B. (2010). J. Alloys Compd. 560, 569-574.]). The title compound is isostructural with KCuFe(PO4)2 (Badri et al., 2011[Badri, A., Hidouri, M., Lopez, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937-944.]) and K(Fe,Mg)(PO4)2 (Yatskin et al., 2012[Yatskin, M. M., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2012). Acta Cryst. E68, i51.]). For P-O distances in monophosphate groups, see: Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Experimental

Crystal data
  • RbCuFe(PO4)2

  • Mr = 394.80

  • Monoclinic, P 21 /n

  • a = 8.054 (1) Å

  • b = 9.906 (3) Å

  • c = 9.140 (1) Å

  • [beta] = 115.47 (1)°

  • V = 658.3 (2) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 13.28 mm-1

  • T = 293 K

  • 0.25 × 0.21 × 0.14 mm

Data collection
  • Enraf-Nonius CAD4 diffractometer

  • Absorption correction: part of the refinement model ([Delta]F) (SHELXLA; Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.060, Tmax = 0.119

  • 1939 measured reflections

  • 1437 independent reflections

  • 1236 reflections with I > \2(I)

  • Rint = 0.046

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2[sigma](F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.08

  • 1437 reflections

  • 54 parameters

  • [Delta][rho]max = 3.25 e Å-3

  • [Delta][rho]min = -2.25 e Å-3

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonuis, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wacadlo, S. (1995). XCAD-4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2226 ).


References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  [CrossRef] [Web of Science] [IUCr Journals]
Badri, A., Hidouri, M., Lopez, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937-944.  [CrossRef] [ChemPort]
Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.  [CrossRef] [ChemPort] [IUCr Journals]
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.
Elbouaanani, L. K., Malaman, B., Gerardin, R. & Ijjaali, M. (2002). J. Solid State Chem. 163, 412-944.  [CrossRef] [ChemPort]
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonuis, Delft, The Netherlands.
Gleitzer, C. (1991). Eur. J. Solid State Inorg. Chem. 28, 77-91.  [ChemPort]
Harms, K. & Wacadlo, S. (1995). XCAD-4. University of Marburg, Germany.
Hidouri, M., Wattiaux, A., Lopez, M. L., Pico, C. & Amara, M. B. (2010). J. Alloys Compd. 560, 569-574.  [CrossRef]
Moore, P. B. (1970). Am. Mineral. 55, 135-169.  [ChemPort]
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.  [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Yatskin, M. M., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2012). Acta Cryst. E68, i51.  [CrossRef] [IUCr Journals]


Acta Cryst (2013). E69, i52  [ doi:10.1107/S1600536813019569 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.