organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­chloro­acetyl-t-3-iso­propyl-r-2,c-6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 1 July 2013; accepted 15 July 2013; online 27 July 2013)

In the title compound, C22H23Cl2NO2, the piperidine ring adopts a twist-boat conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend dihedral angles of 60.6 (2) and 84.2 (1)°, respectively, with the mean plane of the piperidine ring. In the crystal, mol­ecules are linked by C—H⋯O inter­actions into zigzag chains running along the c-axis direction.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]); Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74-3987.]); Michael (2001[Michael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91-258. New York: Academic Press.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Rubiralta et al. (1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225-312. Amsterdam: Elsevier.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23Cl2NO2

  • Mr = 404.31

  • Orthorhombic, P c a 21

  • a = 18.4336 (14) Å

  • b = 9.4516 (7) Å

  • c = 11.7077 (9) Å

  • V = 2039.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.941

  • 10509 measured reflections

  • 4437 independent reflections

  • 3882 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.04

  • 4437 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1759 Friedel pairs

  • Absolute structure parameter: −0.08 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.39 3.144 (3) 133
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are valuable heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetics (Aridoss et al., 2009). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Pinder, 1992; Rubiralta et al., 1991). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts a twist-boat conformation, with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of: q2 = 0.632 (2) Å, q3 = -0.088 (3) Å, ϕ2 = 254.1 (2)° and Δs(N1 and C4) = 69.8 (2)°.

The phenyl rings at the 2- and 6-positions of the piperidine ring occupy axial and equatorial orientation, as evidenced from the torsion angles C4—C3—C2—C13 = 70.6 (3)° and C4—C5—C6—C7 = -165.0 (2)°, respectively. The two phenyl rings are approximately perpendicular to each other with a dihedral angle of 86.6 (2)°. The best plane of the piperidine ring subtends angles of 60.6 (2)° and 84.2 (1)° with the attached phenyl rings [C7—C12 and C13—C18].

The carbonyl group is oriented syn-periplanar to C2 [C2—N1—C22—O2 = -10.9 (4)°] and anti-periplanar to C6 [C6—N1—C22—O2 = 178.2 (2)°].

The crystal packing reveals that the symmetry-related molecules are linked through a network of C—H···O type of intermolecular interactions. Atom C2 (x, y, z) donates a proton to atom O1 (-x + 3/2, y, z + 1/2), which form a chain in zigzag fashion running along the c direction as shown in Fig. 2.

Related literature top

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Nalanishi et al. (1974); Michael (2001); Pinder (1992); Rubiralta et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

t-3-Isopropyl-r-2,c-6-diphenylpiperidin-4-ones (5 mmol) was dissolved in 60 ml of anhydrous benzene. To this solution, dichloroacetylchloride (20 mmol) and triethylamine (20 mmol) were added and the reaction mixture was allowed to stir for 8 h. The course of the reaction was monitored by TLC. The organic layer was dried over anhydrous Na2SO4 and the resulting pasty mass was purified by recrystallization from ethyl acetate. Yield: 70%, m.p. 156–158°C.

Refinement top

N and C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1-Dichloroacetyl-t-3-isopropyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C22H23Cl2NO2F(000) = 848
Mr = 404.31Dx = 1.317 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3882 reflections
a = 18.4336 (14) Åθ = 2.2–28.4°
b = 9.4516 (7) ŵ = 0.34 mm1
c = 11.7077 (9) ÅT = 293 K
V = 2039.8 (3) Å3Block, yellow
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4437 independent reflections
Radiation source: fine-focus sealed tube3882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1424
Tmin = 0.929, Tmax = 0.941k = 1212
10509 measured reflectionsl = 1115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.6068P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4437 reflectionsΔρmax = 0.69 e Å3
244 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1759 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (8)
Crystal data top
C22H23Cl2NO2V = 2039.8 (3) Å3
Mr = 404.31Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.4336 (14) ŵ = 0.34 mm1
b = 9.4516 (7) ÅT = 293 K
c = 11.7077 (9) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3882 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.941Rint = 0.022
10509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136Δρmax = 0.69 e Å3
S = 1.04Δρmin = 0.47 e Å3
4437 reflectionsAbsolute structure: Flack (1983), 1759 Friedel pairs
244 parametersAbsolute structure parameter: 0.08 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.67099 (11)0.9032 (2)0.91976 (19)0.0306 (4)
H20.66510.95160.99320.037*
C30.70822 (12)1.0091 (2)0.8399 (2)0.0352 (4)
H30.75841.02090.86590.042*
C40.71030 (13)0.9535 (3)0.7191 (2)0.0421 (5)
C50.65663 (14)0.8387 (2)0.6894 (2)0.0414 (5)
H5A0.67970.74790.70230.050*
H5B0.64590.84520.60840.050*
C60.58452 (12)0.8409 (2)0.7551 (2)0.0333 (4)
H60.55360.91460.72210.040*
C70.54776 (12)0.6975 (2)0.7366 (2)0.0381 (5)
C80.5026 (2)0.6797 (4)0.6451 (4)0.0778 (12)
H80.49190.75600.59790.093*
C90.4727 (3)0.5481 (5)0.6228 (4)0.0948 (16)
H90.44190.53740.56040.114*
C100.4871 (2)0.4346 (4)0.6897 (3)0.0685 (9)
H100.46830.34600.67200.082*
C110.5299 (2)0.4531 (3)0.7837 (4)0.0712 (11)
H110.53860.37750.83270.085*
C120.56030 (17)0.5841 (3)0.8064 (3)0.0601 (9)
H120.58980.59510.87030.072*
C130.71354 (11)0.7680 (2)0.9446 (2)0.0348 (5)
C140.77614 (13)0.7293 (3)0.8883 (3)0.0464 (6)
H140.79270.78330.82720.056*
C150.81513 (18)0.6090 (3)0.9224 (3)0.0604 (8)
H150.85770.58460.88450.072*
C160.79074 (18)0.5271 (3)1.0114 (3)0.0623 (8)
H160.81630.44671.03320.075*
C170.72847 (17)0.5646 (3)1.0682 (3)0.0567 (7)
H170.71200.50961.12870.068*
C180.69012 (14)0.6841 (3)1.0356 (2)0.0442 (6)
H180.64820.70881.07500.053*
C190.67141 (14)1.1579 (2)0.8402 (2)0.0400 (5)
H190.62341.14890.80480.048*
C200.6614 (2)1.2139 (3)0.9603 (3)0.0606 (8)
H20A0.63311.14791.00390.091*
H20B0.63681.30330.95750.091*
H20C0.70801.22590.99580.091*
C210.7155 (2)1.2637 (3)0.7707 (3)0.0675 (9)
H21A0.72221.22800.69460.101*
H21B0.76201.27740.80610.101*
H21C0.69021.35230.76750.101*
C220.54042 (12)0.8987 (2)0.9506 (2)0.0383 (5)
C230.46416 (13)0.9023 (3)0.8997 (3)0.0506 (7)
H230.46220.84370.83070.061*
N10.59629 (9)0.87405 (18)0.87687 (17)0.0309 (4)
O10.75440 (14)0.9925 (2)0.6505 (2)0.0671 (6)
O20.54794 (11)0.9232 (3)1.05165 (19)0.0602 (6)
Cl20.44564 (6)1.08090 (11)0.86504 (12)0.0926 (4)
Cl10.40029 (5)0.84201 (14)1.00044 (13)0.0960 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0295 (9)0.0290 (9)0.0334 (11)0.0014 (7)0.0020 (7)0.0024 (8)
C30.0349 (9)0.0292 (9)0.0414 (12)0.0046 (7)0.0037 (8)0.0004 (9)
C40.0450 (11)0.0359 (11)0.0454 (14)0.0003 (9)0.0145 (10)0.0012 (10)
C50.0476 (12)0.0440 (12)0.0325 (12)0.0004 (10)0.0069 (9)0.0047 (10)
C60.0358 (9)0.0345 (9)0.0294 (11)0.0002 (8)0.0024 (8)0.0015 (9)
C70.0363 (10)0.0391 (11)0.0389 (13)0.0020 (8)0.0029 (9)0.0037 (9)
C80.101 (3)0.0673 (19)0.065 (2)0.0354 (19)0.040 (2)0.0188 (17)
C90.129 (4)0.082 (2)0.073 (3)0.051 (2)0.055 (3)0.008 (2)
C100.077 (2)0.0510 (15)0.078 (2)0.0206 (15)0.0209 (18)0.0113 (15)
C110.081 (2)0.0369 (13)0.096 (3)0.0077 (13)0.037 (2)0.0021 (15)
C120.0698 (18)0.0399 (13)0.070 (2)0.0064 (12)0.0348 (16)0.0017 (13)
C130.0317 (9)0.0298 (9)0.0428 (13)0.0032 (7)0.0055 (9)0.0002 (9)
C140.0407 (11)0.0413 (12)0.0572 (17)0.0038 (9)0.0013 (11)0.0002 (12)
C150.0531 (15)0.0546 (15)0.073 (2)0.0193 (13)0.0017 (14)0.0057 (15)
C160.0674 (18)0.0362 (12)0.083 (2)0.0118 (12)0.0197 (17)0.0005 (14)
C170.0659 (17)0.0392 (13)0.0649 (19)0.0080 (11)0.0152 (14)0.0113 (13)
C180.0427 (11)0.0381 (11)0.0517 (16)0.0034 (9)0.0032 (11)0.0042 (11)
C190.0457 (12)0.0291 (10)0.0451 (14)0.0003 (8)0.0019 (10)0.0012 (9)
C200.094 (2)0.0332 (12)0.0545 (18)0.0094 (13)0.0004 (16)0.0070 (12)
C210.094 (2)0.0342 (13)0.074 (2)0.0049 (13)0.0195 (19)0.0127 (14)
C220.0305 (10)0.0411 (11)0.0433 (14)0.0007 (8)0.0053 (9)0.0033 (10)
C230.0322 (11)0.0550 (14)0.065 (2)0.0027 (10)0.0052 (11)0.0120 (13)
N10.0275 (7)0.0332 (8)0.0319 (10)0.0009 (6)0.0007 (7)0.0015 (7)
O10.0794 (14)0.0592 (11)0.0628 (14)0.0189 (11)0.0378 (12)0.0073 (10)
O20.0470 (10)0.0915 (16)0.0422 (12)0.0024 (10)0.0119 (8)0.0122 (10)
Cl20.0772 (6)0.0778 (6)0.1229 (10)0.0262 (5)0.0136 (6)0.0178 (6)
Cl10.0470 (4)0.1175 (8)0.1233 (10)0.0192 (5)0.0235 (5)0.0129 (7)
Geometric parameters (Å, º) top
C2—N11.491 (2)C13—C141.378 (3)
C2—C131.527 (3)C13—C181.396 (4)
C2—C31.532 (3)C14—C151.403 (4)
C2—H20.9800C14—H140.9300
C3—C41.509 (4)C15—C161.374 (5)
C3—C191.562 (3)C15—H150.9300
C3—H30.9800C16—C171.373 (5)
C4—O11.200 (3)C16—H160.9300
C4—C51.509 (3)C17—C181.386 (4)
C5—C61.536 (3)C17—H170.9300
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C19—C201.514 (4)
C6—N11.476 (3)C19—C211.524 (4)
C6—C71.531 (3)C19—H190.9800
C6—H60.9800C20—H20A0.9600
C7—C81.367 (4)C20—H20B0.9600
C7—C121.368 (4)C20—H20C0.9600
C8—C91.386 (5)C21—H21A0.9600
C8—H80.9300C21—H21B0.9600
C9—C101.354 (6)C21—H21C0.9600
C9—H90.9300C22—O21.213 (3)
C10—C111.365 (5)C22—N11.364 (3)
C10—H100.9300C22—C231.527 (3)
C11—C121.385 (4)C23—Cl11.762 (3)
C11—H110.9300C23—Cl21.769 (3)
C12—H120.9300C23—H230.9800
N1—C2—C13112.56 (16)C18—C13—C2117.5 (2)
N1—C2—C3109.19 (18)C13—C14—C15120.5 (3)
C13—C2—C3115.65 (18)C13—C14—H14119.7
N1—C2—H2106.3C15—C14—H14119.7
C13—C2—H2106.3C16—C15—C14120.3 (3)
C3—C2—H2106.3C16—C15—H15119.8
C4—C3—C2110.86 (18)C14—C15—H15119.8
C4—C3—C19109.1 (2)C17—C16—C15119.7 (3)
C2—C3—C19113.09 (18)C17—C16—H16120.2
C4—C3—H3107.9C15—C16—H16120.2
C2—C3—H3107.9C16—C17—C18120.3 (3)
C19—C3—H3107.9C16—C17—H17119.9
O1—C4—C3122.5 (2)C18—C17—H17119.9
O1—C4—C5120.7 (2)C17—C18—C13121.0 (3)
C3—C4—C5116.7 (2)C17—C18—H18119.5
C4—C5—C6116.24 (19)C13—C18—H18119.5
C4—C5—H5A108.2C20—C19—C21109.4 (2)
C6—C5—H5A108.2C20—C19—C3111.7 (2)
C4—C5—H5B108.2C21—C19—C3111.0 (2)
C6—C5—H5B108.2C20—C19—H19108.2
H5A—C5—H5B107.4C21—C19—H19108.2
N1—C6—C7112.94 (19)C3—C19—H19108.2
N1—C6—C5111.08 (18)C19—C20—H20A109.5
C7—C6—C5107.48 (18)C19—C20—H20B109.5
N1—C6—H6108.4H20A—C20—H20B109.5
C7—C6—H6108.4C19—C20—H20C109.5
C5—C6—H6108.4H20A—C20—H20C109.5
C8—C7—C12118.4 (2)H20B—C20—H20C109.5
C8—C7—C6119.3 (2)C19—C21—H21A109.5
C12—C7—C6122.3 (2)C19—C21—H21B109.5
C7—C8—C9120.0 (3)H21A—C21—H21B109.5
C7—C8—H8120.0C19—C21—H21C109.5
C9—C8—H8120.0H21A—C21—H21C109.5
C10—C9—C8121.6 (3)H21B—C21—H21C109.5
C10—C9—H9119.2O2—C22—N1124.3 (2)
C8—C9—H9119.2O2—C22—C23118.8 (2)
C9—C10—C11118.6 (3)N1—C22—C23116.9 (2)
C9—C10—H10120.7C22—C23—Cl1110.3 (2)
C11—C10—H10120.7C22—C23—Cl2106.77 (18)
C10—C11—C12120.2 (3)Cl1—C23—Cl2109.47 (15)
C10—C11—H11119.9C22—C23—H23110.1
C12—C11—H11119.9Cl1—C23—H23110.1
C7—C12—C11121.1 (3)Cl2—C23—H23110.1
C7—C12—H12119.4C22—N1—C6122.46 (18)
C11—C12—H12119.4C22—N1—C2116.91 (19)
C14—C13—C18118.2 (2)C6—N1—C2120.02 (17)
C14—C13—C2124.1 (2)
N1—C2—C3—C457.6 (2)C18—C13—C14—C150.3 (4)
C13—C2—C3—C470.6 (2)C2—C13—C14—C15174.9 (3)
N1—C2—C3—C1965.3 (2)C13—C14—C15—C160.9 (5)
C13—C2—C3—C19166.52 (19)C14—C15—C16—C170.9 (5)
C2—C3—C4—O1156.1 (3)C15—C16—C17—C180.3 (5)
C19—C3—C4—O178.7 (3)C16—C17—C18—C130.4 (4)
C2—C3—C4—C520.3 (3)C14—C13—C18—C170.4 (4)
C19—C3—C4—C5104.8 (2)C2—C13—C18—C17175.9 (2)
O1—C4—C5—C6153.7 (3)C4—C3—C19—C20174.8 (2)
C3—C4—C5—C629.8 (3)C2—C3—C19—C2050.9 (3)
C4—C5—C6—N141.1 (3)C4—C3—C19—C2162.9 (3)
C4—C5—C6—C7165.1 (2)C2—C3—C19—C21173.3 (2)
N1—C6—C7—C8148.1 (3)O2—C22—C23—Cl134.0 (3)
C5—C6—C7—C889.1 (3)N1—C22—C23—Cl1148.94 (19)
N1—C6—C7—C1234.1 (3)O2—C22—C23—Cl284.8 (3)
C5—C6—C7—C1288.7 (3)N1—C22—C23—Cl292.2 (2)
C12—C7—C8—C92.2 (6)O2—C22—N1—C6178.3 (2)
C6—C7—C8—C9175.7 (4)C23—C22—N1—C64.8 (3)
C7—C8—C9—C100.1 (8)O2—C22—N1—C210.7 (4)
C8—C9—C10—C112.7 (8)C23—C22—N1—C2166.21 (19)
C9—C10—C11—C122.9 (7)C7—C6—N1—C2267.1 (3)
C8—C7—C12—C111.9 (5)C5—C6—N1—C22172.1 (2)
C6—C7—C12—C11175.9 (3)C7—C6—N1—C2122.20 (19)
C10—C11—C12—C70.7 (6)C5—C6—N1—C21.4 (3)
N1—C2—C13—C14117.0 (2)C13—C2—N1—C22106.7 (2)
C3—C2—C13—C149.4 (3)C3—C2—N1—C22123.5 (2)
N1—C2—C13—C1867.7 (3)C13—C2—N1—C682.1 (2)
C3—C2—C13—C18165.8 (2)C3—C2—N1—C647.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.393.144 (3)133
Symmetry code: (i) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.393.144 (3)132.9
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students. SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationMichael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91–258. New York: Academic Press.
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74–3987.
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds