organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3S,8R,10R,11R)-3,7,7,10-Tetra­methyl­tri­cyclo­[6.4.0.01,3]dodecan-11-ol

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université MohammedV-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Chimie des Substances Naturelles `Unité Associé au CNRST (URAC16)', Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 22 July 2013; accepted 24 July 2013; online 31 July 2013)

The title compound, C16H28O, was synthesized by three steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus atlantica). The mol­ecule is built up from fused six- and seven-membered rings and an appended three-membered ring. The six-membered ring has twist-boat conformation, whereas the seven-membered ring displays a chair conformation. In the crystal, mol­ecules are linked into chains propagating along the a-axis direction by O—H⋯O hydrogen bonds.

Related literature

For the reactivity and biological properties of β-himachalene, see: Auhmani et al.(2002[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699-707.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For related structures, see: Ourhriss et al. (2013[Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.]); Benharref et al. (2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H28O

  • Mr = 236.38

  • Orthorhombic, P 21 21 21

  • a = 5.8796 (2) Å

  • b = 12.7822 (4) Å

  • c = 19.1496 (7) Å

  • V = 1439.17 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8482 measured reflections

  • 1724 independent reflections

  • 1485 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.03

  • 1724 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 2.35 3.139 (3) 163
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The essential oil of the Atlas cedar (Cedrus atlantica) consists mainly (50%) of a bicyclic hydrocarbon sesquiterpene called β-himachalene (El Jamili et al., 2002). The reactivity of this terpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (Daoubi et al., 2004; Benharref et al. 2013; Ourhriss et al., 2013). In this work, We present the crystal structure of (1S, 3S,8R, 10R, 11R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3] dodec-11-ol. The molecule is built up from two fused six- and seven-membered rings and an additional three-membered ring (Fig. 1). The six-membered ring has a twist-boat conformation, as indicated by the total puckering amplitude QT = 0.783 (2) Å and spherical polar angle θ = 90.98 (15)° with ϕ = 334.28 (16)°, whereas the seven-membered ring displays a chair conformation with QT = 0.7646 (22) Å, θ2 = 32.19 (19), ϕ2 = 128.95 (34) and ϕ3 = 101.54 (20)° (Cremer & Pople, 1975). In the crystal structure, molecules are linked into chains (Fig. 2) running along the a axis by intermolecular O–H···O hydrogen bonds (Table 1).

Related literature top

For the reactivity and biological properties of β-himachalene, see: Auhmani et al.(2002); El Jamili et al. (2002); Daoubi et al. (2004). For related structures, see: Ourhriss et al. (2013); Benharref et al. (2013). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a three-necked flask equipped with a dropping funnel, a condenser and a magnetic stirrer, maintained at 0°C, 2 g (6.6 mmol) of (1S,3R,8R) - 2,2-Dichloro-3,7,7,10-tetramethyltricyclo-[6.4.0.01,3] dodec-9-en-11-one (Auhmani et al., 2002) were introduced in 50 ml of ether. Then, 2 g of sodium were added by small portions during one hour, and dropwise 65 ml of a methanol solution 2.5% of water. The reaction mixture was stirred for 12 h. After hydrolysis with 20 mL of water, the two phases were separated and the aqueous phase was extracted three times with 20 ml of ether. The organic phases were combined and dried over sodium sulfate and concentrated. The residue obtained was chromatographed on a silica column with hexane and ethyl acetate(95/5) as eluent to give the sesquiterpene alcohol (1S, 3S,8R, 10R, 11R)-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-11-ol with a yield of 97% (1.5 g; 6.4 mmol). The title compound was recrystallized from n-pentane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and 0.82 Å (O–H) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl and OH). The methyl groups and the hydroxyl group were allowed to rotate but not to tip. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the O–H···O interactions (dashed lines)and the formation of a chain parallel to the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1S,3S,8R,10R,11R)-3,7,7,10-Tetramethyltricyclo[6.4.0.01,3]dodecan-11-ol top
Crystal data top
C16H28OF(000) = 528
Mr = 236.38Dx = 1.091 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1724 reflections
a = 5.8796 (2) Åθ = 2.7–26.4°
b = 12.7822 (4) ŵ = 0.07 mm1
c = 19.1496 (7) ÅT = 298 K
V = 1439.17 (8) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1485 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
ω and ϕ scansh = 76
8482 measured reflectionsk = 1515
1724 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.1784P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1724 reflectionsΔρmax = 0.15 e Å3
160 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C16H28OV = 1439.17 (8) Å3
Mr = 236.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8796 (2) ŵ = 0.07 mm1
b = 12.7822 (4) ÅT = 298 K
c = 19.1496 (7) Å0.25 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1485 reflections with I > 2σ(I)
8482 measured reflectionsRint = 0.030
1724 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
1724 reflectionsΔρmin = 0.12 e Å3
160 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8389 (3)1.04007 (14)0.11966 (10)0.0381 (4)
C20.9711 (4)1.13257 (15)0.14824 (11)0.0510 (5)
H2A1.13391.12440.15440.061*
H2B0.92311.20210.13420.061*
C30.8171 (4)1.07206 (16)0.19602 (11)0.0467 (5)
C40.9300 (4)1.00520 (18)0.25137 (11)0.0585 (6)
H4A0.91841.04110.29580.070*
H4B1.09040.99910.24020.070*
C50.8329 (5)0.89612 (19)0.25971 (11)0.0612 (6)
H5A0.66870.89950.25530.073*
H5B0.86780.87070.30620.073*
C60.9253 (4)0.81891 (16)0.20627 (10)0.0551 (6)
H6A0.87180.74990.21940.066*
H6B1.08960.81830.21080.066*
C70.8694 (3)0.83462 (15)0.12864 (10)0.0413 (5)
C80.9669 (3)0.93978 (13)0.09937 (9)0.0352 (4)
H81.12100.94670.11830.042*
C90.9916 (4)0.93761 (14)0.01895 (9)0.0439 (4)
H9A1.12880.89960.00680.053*
H9B0.86340.90030.00090.053*
C101.0027 (4)1.04668 (16)0.01305 (10)0.0489 (5)
H101.11511.08730.01330.059*
C110.7729 (4)1.09873 (15)0.00364 (12)0.0528 (6)
H110.67291.07600.04170.063*
C120.6602 (4)1.06999 (15)0.06595 (11)0.0464 (5)
H12A0.57281.12910.08300.056*
H12B0.55671.01180.05900.056*
C130.5996 (5)1.1233 (2)0.22183 (14)0.0690 (7)
H13A0.62961.15990.26460.104*
H13B0.48631.07060.22980.104*
H13C0.54561.17190.18740.104*
C140.6117 (4)0.82570 (18)0.11891 (13)0.0562 (6)
H14A0.57520.83170.07020.084*
H14B0.53750.88070.14430.084*
H14C0.56070.75910.13610.084*
C150.9811 (5)0.74201 (14)0.09077 (12)0.0563 (6)
H15A0.93250.67770.11190.084*
H15B1.14350.74780.09420.084*
H15C0.93710.74260.04250.084*
C161.0780 (6)1.0442 (2)0.08917 (12)0.0769 (8)
H16A1.23211.01970.09190.115*
H16B1.06861.11340.10850.115*
H16C0.98070.99800.11500.115*
O10.8089 (4)1.20972 (12)0.01013 (12)0.0789 (6)
H10.68571.23960.01200.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (9)0.0379 (9)0.0454 (10)0.0016 (8)0.0027 (9)0.0033 (8)
C20.0448 (12)0.0457 (10)0.0625 (13)0.0076 (10)0.0022 (11)0.0117 (9)
C30.0404 (11)0.0495 (11)0.0502 (11)0.0040 (10)0.0018 (10)0.0143 (9)
C40.0555 (14)0.0780 (15)0.0419 (11)0.0040 (12)0.0058 (11)0.0128 (10)
C50.0680 (15)0.0762 (15)0.0394 (11)0.0016 (14)0.0003 (12)0.0067 (10)
C60.0609 (14)0.0566 (12)0.0478 (11)0.0041 (11)0.0034 (11)0.0126 (10)
C70.0406 (11)0.0402 (9)0.0431 (10)0.0007 (9)0.0014 (9)0.0032 (8)
C80.0285 (9)0.0394 (9)0.0378 (9)0.0005 (8)0.0029 (8)0.0002 (7)
C90.0476 (11)0.0420 (9)0.0419 (10)0.0026 (9)0.0028 (9)0.0010 (8)
C100.0540 (12)0.0490 (11)0.0435 (10)0.0043 (11)0.0007 (10)0.0056 (9)
C110.0549 (13)0.0448 (11)0.0586 (12)0.0005 (10)0.0141 (11)0.0099 (10)
C120.0375 (10)0.0416 (10)0.0603 (12)0.0045 (9)0.0077 (10)0.0004 (9)
C130.0592 (15)0.0730 (16)0.0748 (16)0.0046 (14)0.0130 (13)0.0234 (13)
C140.0478 (12)0.0572 (13)0.0635 (13)0.0135 (11)0.0021 (11)0.0105 (11)
C150.0687 (16)0.0371 (10)0.0632 (13)0.0014 (11)0.0020 (13)0.0016 (9)
C160.100 (2)0.0785 (16)0.0527 (13)0.0024 (17)0.0111 (15)0.0157 (12)
O10.0872 (13)0.0459 (8)0.1035 (14)0.0081 (9)0.0012 (13)0.0243 (9)
Geometric parameters (Å, º) top
C1—C21.517 (3)C9—H9A0.9700
C1—C121.519 (3)C9—H9B0.9700
C1—C31.524 (3)C10—C111.517 (3)
C1—C81.536 (2)C10—C161.524 (3)
C2—C31.502 (3)C10—H100.9800
C2—H2A0.9700C11—O11.440 (2)
C2—H2B0.9700C11—C121.533 (3)
C3—C41.515 (3)C11—H110.9800
C3—C131.520 (3)C12—H12A0.9700
C4—C51.515 (3)C12—H12B0.9700
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C61.522 (3)C13—H13C0.9600
C5—H5A0.9700C14—H14A0.9600
C5—H5B0.9700C14—H14B0.9600
C6—C71.536 (3)C14—H14C0.9600
C6—H6A0.9700C15—H15A0.9600
C6—H6B0.9700C15—H15B0.9600
C7—C141.531 (3)C15—H15C0.9600
C7—C151.536 (3)C16—H16A0.9600
C7—C81.565 (2)C16—H16B0.9600
C8—C91.547 (2)C16—H16C0.9600
C8—H80.9800O1—H10.8200
C9—C101.524 (3)
C2—C1—C12113.73 (16)C10—C9—H9A109.0
C2—C1—C359.18 (13)C8—C9—H9A109.0
C12—C1—C3121.59 (17)C10—C9—H9B109.0
C2—C1—C8119.38 (16)C8—C9—H9B109.0
C12—C1—C8112.19 (15)H9A—C9—H9B107.8
C3—C1—C8120.51 (16)C11—C10—C16112.4 (2)
C3—C2—C160.63 (13)C11—C10—C9108.36 (18)
C3—C2—H2A117.7C16—C10—C9112.22 (18)
C1—C2—H2A117.7C11—C10—H10107.9
C3—C2—H2B117.7C16—C10—H10107.9
C1—C2—H2B117.7C9—C10—H10107.9
H2A—C2—H2B114.8O1—C11—C10106.89 (19)
C2—C3—C4116.9 (2)O1—C11—C12112.0 (2)
C2—C3—C13118.91 (19)C10—C11—C12112.53 (17)
C4—C3—C13112.6 (2)O1—C11—H11108.4
C2—C3—C160.18 (12)C10—C11—H11108.4
C4—C3—C1118.90 (17)C12—C11—H11108.4
C13—C3—C1119.91 (19)C1—C12—C11110.48 (17)
C3—C4—C5115.3 (2)C1—C12—H12A109.6
C3—C4—H4A108.4C11—C12—H12A109.6
C5—C4—H4A108.4C1—C12—H12B109.6
C3—C4—H4B108.4C11—C12—H12B109.6
C5—C4—H4B108.4H12A—C12—H12B108.1
H4A—C4—H4B107.5C3—C13—H13A109.5
C4—C5—C6113.0 (2)C3—C13—H13B109.5
C4—C5—H5A109.0H13A—C13—H13B109.5
C6—C5—H5A109.0C3—C13—H13C109.5
C4—C5—H5B109.0H13A—C13—H13C109.5
C6—C5—H5B109.0H13B—C13—H13C109.5
H5A—C5—H5B107.8C7—C14—H14A109.5
C5—C6—C7119.33 (18)C7—C14—H14B109.5
C5—C6—H6A107.5H14A—C14—H14B109.5
C7—C6—H6A107.5C7—C14—H14C109.5
C5—C6—H6B107.5H14A—C14—H14C109.5
C7—C6—H6B107.5H14B—C14—H14C109.5
H6A—C6—H6B107.0C7—C15—H15A109.5
C14—C7—C6108.64 (19)C7—C15—H15B109.5
C14—C7—C15108.0 (2)H15A—C15—H15B109.5
C6—C7—C15105.37 (16)C7—C15—H15C109.5
C14—C7—C8112.51 (17)H15A—C15—H15C109.5
C6—C7—C8112.38 (16)H15B—C15—H15C109.5
C15—C7—C8109.65 (16)C10—C16—H16A109.5
C1—C8—C9108.22 (15)C10—C16—H16B109.5
C1—C8—C7116.53 (15)H16A—C16—H16B109.5
C9—C8—C7112.05 (14)C10—C16—H16C109.5
C1—C8—H8106.5H16A—C16—H16C109.5
C9—C8—H8106.5H16B—C16—H16C109.5
C7—C8—H8106.5C11—O1—H1109.5
C10—C9—C8112.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.822.353.139 (3)163
Symmetry code: (i) x1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.822.353.139 (3)163
Symmetry code: (i) x1/2, y+5/2, z.
 

Acknowledgements

We thank the National Center of Scientific and Technological Research (CNRST) which supports our scientific research.

References

First citationAuhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699–707.  Web of Science CrossRef CAS Google Scholar
First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOurhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds