organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-4-(1,3-benzoxazol-2-yl)-5-(cyclo­hexyl­amino)­thio­phene-2-carbo­nitrile

aLaboratoire de Chimie Organique Physique, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisia
*Correspondence e-mail: belhouchet2002@yahoo.fr

(Received 28 May 2013; accepted 18 July 2013; online 27 July 2013)

In the title compound, C18H18N4OS, the cyclo­hexyl ring adopts a chair conformation. The other rings of this compound lie almost in the same plane, with a mean deviation of 0.03 (2) Å from the least-squares plane defined by the 14 constituent atoms. There are intra­molecular N—H⋯N and N—H⋯O hydrogen bonds, as well as inter­molecular N—H⋯N hydrogen bonds, which link the mol­ecules into centrosymmetric dimers.

Related literature

For the pharmacological and biological activities of benzoxazole derivatives, see: Isomura et al. (1983[Isomura, Y., Ito, N., Homma, H., Abe, T. & Kubo, K. (1983). Chem. Pharm. Bull. 31, 3618-3178.]); Cheng et al.(1993[Cheng, C. C., Liu, D. E. & Chou, T. C. (1993). Heterocycles, 35, 775-789.]); Koci et al. (2002[Koci, J., Klimesova, V., Waisser, K., Kaustova, J., Dahse, H. M. & Mollmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275-3278.]); Hoffman et al. (1993[Hoffman, J. M., Smith, A. M., Rooney, C. S., Fisher, T. E., Wai, J. S., Thomas, C. M., Bamberger, D. L. & Anderson, P. S. (1993). J. Med. Chem. 36, 953-966.]); Arpaci et al. (2002[Arpaci, T., Yalcin, I. & Altanlar, N. (2002). Arch. Pharm. 57, 283-288.]). For the synthesis and a similar structure, see: Youssef et al. (2011[Youssef, C., BenAmmar, H., Belhouchet, M., Beydoun, K., Ben Salem, R., Doucet, H. & Dixneuf, P. H. (2011). J. Heterocycl. Chem. 48, 1126-1131.]); Belhouchet et al. (2012[Belhouchet, M., Youssef, C., Ben Ammar, H., Ben Salem, R. & Mhiri, T. (2012). X-ray Struct. Anal. Online, 28, 3-4.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N4OS

  • Mr = 338.42

  • Monoclinic, C 2/c

  • a = 24.270 (5) Å

  • b = 6.193 (5) Å

  • c = 23.578 (5) Å

  • β = 107.554 (5)°

  • V = 3379 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.655, Tmax = 0.746

  • 13506 measured reflections

  • 2961 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.01

  • 2961 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.92 (3) 2.13 (3) 2.783 (4) 127 (2)
N2—H2N2⋯N1i 0.86 (3) 2.25 (3) 3.088 (4) 166 (3)
N3—H1N3⋯N4 0.86 (2) 2.12 (3) 2.787 (3) 135 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Substituted thiophenes have attracted considerable interest because they are endowed with variety of biological activities and have wide range of therapeutic properties. The Literature survey indicates that benzoxazole derivatives possess different pharmacological and biological activities (Isomura et al., 1983) which of most potent activity such as anti-tumor (Cheng et al. 1993), anticancer (Koci et al., 2002), antiviral (Hoffman et al., 1993), or antimicrobial (Arpaci et al., 2002) properties. For these reasons we thought to synthesize thiophene system incorporating benzoxazole.

The present report describes the molecular structure of 3-amino-4-benzo[d]oxazol-2-yl-5-(cyclohexylamino) thiophène-2-carbonitrile. The crystal structure of this compound is built up from two fused five(O1/C6/N4/C12/C7) and six membered (C7—C11) rings linked to five (C2—C5/S1) membered ring via C6—C4 bond. The built planar entity (with a mean deviation of 0.03 (2) Å from the least square plane defined by the fourteen constituted atoms) is linked to the cyclohexyl ring (adopting a chair conformation) via two C—N bonds (C5—N3 and C13-N3) as shown in Figure 1. All bond lengths are normal and are comparable with those reported for a similar structure (Belhouchet et al., 2012). There are intramolecular N—H···N and N—H···O hydrogen bonds as well as intermolecular N—H···N hydrogen bonds which link the molecules into centrosymmetric dimers (Figure 2 and Table 1). There are no other intermolecular interactions present.

Related literature top

For the pharmacological and biological activities of benzoxazole derivatives, see: Isomura et al. (1983); Cheng et al.(1993); Koci et al. (2002); Hoffman et al. (1993); Arpaci et al. (2002). For the synthesis and a similar structure, see: Youssef et al. (2011); Belhouchet et al. (2012).

Experimental top

Previously, we investigated the reaction of benzoxazole with active methylene compounds and aldehyde in alkaline medium, which has proved to be a convenient route for the synthesis of pyridobenzoxazole ring systems (Youssef et al.,2011). Now, we have extended our synthetic program to the synthesis of thiophenes ring system, utilizing benzoxazol-2-cyanomethyle as a key starting material.

To a cold suspension of potassium tertio-butylate (25 mmol) in THF (30 ml) benzoxazol-2-cyanomethyl was added (22 mmol) and followed by cyclohexyl isothiocyanate (22 mmol). The mixture was stirred overnight at room temperature and treated with the chloroacetone (22 mmol), stirring was continued for 4 h. The reaction mixture was poured onto ice cold water. Acidification using dilute HCl until the medium becomes acidic gave the synthesized solid product which was filtered off, washed with water, dried and recrystallized from aqueous ethanol solution to give single-crystal suitable for the X-ray diffraction.)

Refinement top

H atoms bonded to N2 and N3 were located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).)

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: pulbCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-Amino-4-(1,3-benzoxazol-2-yl)-5-(cyclohexylamino)thiophene-2-carbonitrile top
Crystal data top
C18H18N4OSF(000) = 1424
Mr = 338.42Dx = 1.331 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2961 reflections
a = 24.270 (5) Åθ = 1.8–24.9°
b = 6.193 (5) ŵ = 0.20 mm1
c = 23.578 (5) ÅT = 293 K
β = 107.554 (5)°Parallelepipedic, violet
V = 3379 (3) Å30.3 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
2961 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 24.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2827
Tmin = 0.655, Tmax = 0.746k = 77
13506 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4702P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2961 reflectionsΔρmax = 0.17 e Å3
230 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (2)
Crystal data top
C18H18N4OSV = 3379 (3) Å3
Mr = 338.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.270 (5) ŵ = 0.20 mm1
b = 6.193 (5) ÅT = 293 K
c = 23.578 (5) Å0.3 × 0.25 × 0.22 mm
β = 107.554 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
2961 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1904 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.746Rint = 0.049
13506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
2961 reflectionsΔρmin = 0.17 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55009 (3)0.30537 (10)0.19986 (3)0.0550 (3)
O10.62688 (7)0.2687 (2)0.09537 (7)0.0517 (5)
N10.47339 (13)0.5797 (5)0.05475 (13)0.0976 (10)
N20.55845 (11)0.0864 (5)0.04725 (11)0.0593 (7)
N30.61458 (10)0.0165 (4)0.26076 (9)0.0521 (6)
N40.65779 (8)0.3092 (3)0.19499 (8)0.0432 (5)
C10.50228 (12)0.4550 (5)0.08608 (13)0.0643 (8)
C20.53698 (10)0.3009 (4)0.12313 (11)0.0501 (6)
C30.56239 (10)0.1264 (4)0.10435 (11)0.0456 (6)
C40.59338 (10)0.0064 (3)0.15318 (10)0.0423 (6)
C50.59027 (10)0.0711 (3)0.20748 (11)0.0436 (6)
C60.62674 (10)0.1949 (4)0.15031 (10)0.0422 (6)
C70.66194 (10)0.4503 (4)0.10807 (11)0.0464 (6)
C80.67552 (12)0.5875 (4)0.06869 (12)0.0610 (7)
H80.66200.56690.02770.073*
C90.71069 (12)0.7582 (4)0.09423 (14)0.0657 (8)
H90.72110.85720.06970.079*
C100.73088 (11)0.7869 (4)0.15490 (13)0.0607 (7)
H100.75480.90390.17010.073*
C110.71652 (10)0.6462 (4)0.19378 (12)0.0539 (7)
H110.73020.66600.23480.065*
C120.68079 (10)0.4743 (3)0.16885 (10)0.0433 (6)
C130.61259 (11)0.0713 (4)0.31737 (10)0.0462 (6)
H130.57600.14930.31050.055*
C140.61355 (13)0.1124 (4)0.36007 (12)0.0614 (7)
H14A0.57980.20280.34390.074*
H14B0.64760.20050.36420.074*
C150.61409 (14)0.0298 (4)0.42067 (12)0.0698 (8)
H15A0.57790.04330.41730.084*
H15B0.61730.15110.44750.084*
C160.66333 (14)0.1232 (4)0.44618 (12)0.0736 (9)
H16A0.69970.04730.45300.088*
H16B0.66140.17770.48410.088*
C170.66063 (15)0.3097 (4)0.40402 (12)0.0768 (9)
H17A0.69340.40460.42030.092*
H17B0.62560.39220.39970.092*
C180.66133 (12)0.2272 (4)0.34334 (12)0.0625 (8)
H18A0.65800.34850.31650.075*
H18B0.69790.15590.34730.075*
H1N20.5767 (13)0.030 (4)0.0372 (12)0.076 (10)*
H2N20.5435 (12)0.177 (4)0.0194 (13)0.075 (10)*
H1N30.6341 (11)0.132 (4)0.2608 (11)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0570 (5)0.0570 (4)0.0565 (5)0.0136 (3)0.0255 (3)0.0145 (3)
O10.0574 (11)0.0541 (10)0.0389 (10)0.0030 (8)0.0075 (8)0.0010 (8)
N10.106 (2)0.111 (2)0.084 (2)0.0561 (18)0.0410 (17)0.0446 (17)
N20.0645 (16)0.0656 (17)0.0407 (16)0.0077 (13)0.0052 (12)0.0114 (13)
N30.0647 (15)0.0519 (14)0.0394 (14)0.0158 (11)0.0155 (11)0.0076 (11)
N40.0461 (12)0.0434 (11)0.0366 (12)0.0030 (9)0.0070 (9)0.0029 (9)
C10.0602 (19)0.0753 (19)0.064 (2)0.0181 (15)0.0288 (15)0.0232 (16)
C20.0437 (15)0.0552 (15)0.0529 (17)0.0115 (12)0.0168 (12)0.0214 (13)
C30.0393 (14)0.0542 (15)0.0410 (16)0.0047 (11)0.0085 (12)0.0104 (12)
C40.0433 (14)0.0424 (13)0.0383 (15)0.0018 (11)0.0078 (11)0.0054 (11)
C50.0418 (14)0.0443 (13)0.0446 (16)0.0004 (11)0.0126 (12)0.0072 (12)
C60.0422 (14)0.0460 (13)0.0370 (15)0.0083 (11)0.0096 (11)0.0027 (12)
C70.0466 (15)0.0455 (14)0.0460 (16)0.0011 (11)0.0122 (12)0.0024 (12)
C80.0661 (19)0.0665 (17)0.0491 (17)0.0009 (15)0.0154 (14)0.0073 (14)
C90.0667 (19)0.0626 (18)0.072 (2)0.0009 (15)0.0280 (17)0.0172 (15)
C100.0555 (17)0.0545 (16)0.074 (2)0.0063 (13)0.0223 (15)0.0004 (15)
C110.0540 (17)0.0553 (16)0.0504 (17)0.0060 (13)0.0124 (13)0.0057 (13)
C120.0424 (15)0.0441 (14)0.0423 (16)0.0066 (11)0.0111 (12)0.0022 (11)
C130.0537 (16)0.0468 (14)0.0431 (16)0.0072 (12)0.0221 (12)0.0067 (11)
C140.085 (2)0.0515 (15)0.0513 (18)0.0059 (14)0.0261 (15)0.0081 (13)
C150.103 (2)0.0629 (17)0.0560 (19)0.0047 (17)0.0423 (17)0.0149 (14)
C160.105 (3)0.0748 (19)0.0445 (18)0.0059 (18)0.0274 (17)0.0021 (15)
C170.109 (3)0.0680 (19)0.059 (2)0.0191 (17)0.0346 (18)0.0087 (16)
C180.078 (2)0.0593 (16)0.0576 (18)0.0065 (14)0.0325 (15)0.0038 (14)
Geometric parameters (Å, º) top
S1—C51.727 (3)C9—H90.9300
S1—C21.740 (3)C10—C111.383 (3)
O1—C61.375 (3)C10—H100.9300
O1—C71.387 (3)C11—C121.387 (3)
N1—C11.150 (3)C11—H110.9300
N2—C31.343 (3)C13—C181.506 (3)
N2—H1N20.92 (3)C13—C141.515 (3)
N2—H2N20.86 (3)C13—H130.9800
N3—C51.332 (3)C14—C151.514 (4)
N3—C131.455 (3)C14—H14A0.9700
N3—H1N30.86 (2)C14—H14B0.9700
N4—C61.304 (3)C15—C161.502 (4)
N4—C121.394 (3)C15—H15A0.9700
C1—C21.392 (4)C15—H15B0.9700
C2—C31.382 (3)C16—C171.513 (4)
C3—C41.430 (3)C16—H16A0.9700
C4—C51.391 (3)C16—H16B0.9700
C4—C61.434 (3)C17—C181.524 (3)
C7—C81.370 (3)C17—H17A0.9700
C7—C121.375 (3)C17—H17B0.9700
C8—C91.378 (4)C18—H18A0.9700
C8—H80.9300C18—H18B0.9700
C9—C101.377 (4)
C5—S1—C290.89 (11)C7—C12—C11119.6 (2)
C6—O1—C7104.00 (17)C7—C12—N4109.3 (2)
C3—N2—H1N2120.8 (18)C11—C12—N4131.2 (2)
C3—N2—H2N2122.0 (19)N3—C13—C18111.91 (19)
H1N2—N2—H2N2116 (3)N3—C13—C14109.3 (2)
C5—N3—C13125.8 (2)C18—C13—C14111.0 (2)
C5—N3—H1N3115.3 (18)N3—C13—H13108.2
C13—N3—H1N3118.9 (18)C18—C13—H13108.2
C6—N4—C12104.58 (19)C14—C13—H13108.2
N1—C1—C2178.9 (4)C15—C14—C13111.6 (2)
C3—C2—C1125.4 (2)C15—C14—H14A109.3
C3—C2—S1112.71 (17)C13—C14—H14A109.3
C1—C2—S1121.8 (2)C15—C14—H14B109.3
N2—C3—C2124.1 (2)C13—C14—H14B109.3
N2—C3—C4124.2 (2)H14A—C14—H14B108.0
C2—C3—C4111.7 (2)C16—C15—C14111.8 (2)
C5—C4—C3112.4 (2)C16—C15—H15A109.3
C5—C4—C6120.9 (2)C14—C15—H15A109.3
C3—C4—C6126.7 (2)C16—C15—H15B109.3
N3—C5—C4126.6 (2)C14—C15—H15B109.3
N3—C5—S1121.08 (19)H15A—C15—H15B107.9
C4—C5—S1112.33 (17)C15—C16—C17110.3 (3)
N4—C6—O1114.6 (2)C15—C16—H16A109.6
N4—C6—C4126.9 (2)C17—C16—H16A109.6
O1—C6—C4118.5 (2)C15—C16—H16B109.6
C8—C7—C12124.6 (2)C17—C16—H16B109.6
C8—C7—O1127.8 (2)H16A—C16—H16B108.1
C12—C7—O1107.6 (2)C16—C17—C18110.5 (2)
C7—C8—C9115.1 (3)C16—C17—H17A109.6
C7—C8—H8122.5C18—C17—H17A109.6
C9—C8—H8122.5C16—C17—H17B109.6
C10—C9—C8122.2 (3)C18—C17—H17B109.6
C10—C9—H9118.9H17A—C17—H17B108.1
C8—C9—H9118.9C13—C18—C17111.5 (2)
C9—C10—C11121.7 (3)C13—C18—H18A109.3
C9—C10—H10119.2C17—C18—H18A109.3
C11—C10—H10119.2C13—C18—H18B109.3
C10—C11—C12116.9 (2)C17—C18—H18B109.3
C10—C11—H11121.5H18A—C18—H18B108.0
C12—C11—H11121.5
N1—C1—C2—C325 (16)C3—C4—C6—O14.7 (3)
N1—C1—C2—S1152 (16)C6—O1—C7—C8178.5 (2)
C5—S1—C2—C30.11 (19)C6—O1—C7—C120.3 (2)
C5—S1—C2—C1177.5 (2)C12—C7—C8—C90.1 (4)
C1—C2—C3—N22.4 (4)O1—C7—C8—C9178.7 (2)
S1—C2—C3—N2179.76 (19)C7—C8—C9—C100.5 (4)
C1—C2—C3—C4177.6 (2)C8—C9—C10—C110.5 (4)
S1—C2—C3—C40.3 (3)C9—C10—C11—C120.0 (4)
N2—C3—C4—C5179.7 (2)C8—C7—C12—C110.6 (4)
C2—C3—C4—C50.3 (3)O1—C7—C12—C11179.46 (19)
N2—C3—C4—C62.7 (4)C8—C7—C12—N4178.7 (2)
C2—C3—C4—C6177.3 (2)O1—C7—C12—N40.2 (3)
C13—N3—C5—C4177.6 (2)C10—C11—C12—C70.5 (3)
C13—N3—C5—S12.1 (3)C10—C11—C12—N4178.6 (2)
C3—C4—C5—N3180.0 (2)C6—N4—C12—C70.0 (2)
C6—C4—C5—N32.2 (4)C6—N4—C12—C11179.1 (2)
C3—C4—C5—S10.2 (3)C5—N3—C13—C1888.0 (3)
C6—C4—C5—S1177.51 (16)C5—N3—C13—C14148.6 (2)
C2—S1—C5—N3179.8 (2)N3—C13—C14—C15177.6 (2)
C2—S1—C5—C40.06 (19)C18—C13—C14—C1553.7 (3)
C12—N4—C6—O10.3 (2)C13—C14—C15—C1655.2 (3)
C12—N4—C6—C4179.4 (2)C14—C15—C16—C1756.8 (3)
C7—O1—C6—N40.4 (2)C15—C16—C17—C1857.1 (3)
C7—O1—C6—C4179.33 (19)N3—C13—C18—C17177.2 (2)
C5—C4—C6—N41.7 (4)C14—C13—C18—C1754.8 (3)
C3—C4—C6—N4175.7 (2)C16—C17—C18—C1356.8 (3)
C5—C4—C6—O1178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.92 (3)2.13 (3)2.783 (4)127 (2)
N2—H2N2···N1i0.86 (3)2.25 (3)3.088 (4)166 (3)
N3—H1N3···N40.86 (2)2.12 (3)2.787 (3)135 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.92 (3)2.13 (3)2.783 (4)127 (2)
N2—H2N2···N1i0.86 (3)2.25 (3)3.088 (4)166 (3)
N3—H1N3···N40.86 (2)2.12 (3)2.787 (3)135 (2)
Symmetry code: (i) x+1, y+1, z.
 

References

First citationArpaci, T., Yalcin, I. & Altanlar, N. (2002). Arch. Pharm. 57, 283–288.
First citationBelhouchet, M., Youssef, C., Ben Ammar, H., Ben Salem, R. & Mhiri, T. (2012). X-ray Struct. Anal. Online, 28, 3–4.  CSD CrossRef CAS
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCheng, C. C., Liu, D. E. & Chou, T. C. (1993). Heterocycles, 35, 775–789.  CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHoffman, J. M., Smith, A. M., Rooney, C. S., Fisher, T. E., Wai, J. S., Thomas, C. M., Bamberger, D. L. & Anderson, P. S. (1993). J. Med. Chem. 36, 953–966.  CrossRef CAS PubMed Web of Science
First citationIsomura, Y., Ito, N., Homma, H., Abe, T. & Kubo, K. (1983). Chem. Pharm. Bull. 31, 3618–3178.
First citationKoci, J., Klimesova, V., Waisser, K., Kaustova, J., Dahse, H. M. & Mollmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275–3278.  Web of Science PubMed CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationYoussef, C., BenAmmar, H., Belhouchet, M., Beydoun, K., Ben Salem, R., Doucet, H. & Dixneuf, P. H. (2011). J. Heterocycl. Chem. 48, 1126–1131.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds