supplementary materials


bv2223 scheme

Acta Cryst. (2013). E69, o1293-o1294    [ doi:10.1107/S1600536813019351 ]

1-(4-Methoxyphenyl)-2-[4-(trifluoromethyl)phenyl]-1H-phenanthro[9,10-d]imidazole

T. Mohandas, R. Sathishkumar, J. Jayabharathi, A. Pasupathi and P. Sakthivel

Abstract top

In the title compound, C29H19F3N2O, a phenanthroline-fused imidazole tetracyclic system, the fused benzene rings deviate slightly from the central ring and make dihedral angles with this ring of 3.47 (8) and 3.05 (8)°. The trifluoromethylphenyl ring is roughly coplanar with the phenanthroline-fused imidazole tetracyclic system [dihedral angle = 11.02 (6)°], while the methoxyphenyl ring is almost perpendicular [dihedral angle = 87.65 (6)°]. There are intramolecular C-H ...[pi] interactions involving the methoxyphenyl ring and the central phenanthroline ring, as well as an intermolecular C-H...[pi] interaction involving the phenanthroline ring. In addition, there is an intermolecular [pi]-[pi] interaction involving the central phenanthroline ring and the trifluoromethylphenyl ring [centroid-centroid distance = 3.685 (2) Å], as well as C-H...N interactions linking the molecules into dimers.

Comment top

The large variety of complexes based on phenanthroline or polypyridyl derivatives allows the formation of many different molecular systems with various applications ranging from metallo-supramolecular chemistry (Lehn, 1995), metal sensors (Walters et al., 2000), molecular electronics (Peng et al., 1997), and photo sensitizers (Hara et al., 2001). Therefore, in the recent years the preparation of phenanthroimidazoles has gained great attention.

In this phenanthroline triclinic ring system, the phenyl rings on either end are slightly deviated from the central ring and make the dihedral angles with this ring of 3.47 (8)° and 3.05 (8)° respectively. The trifluromethyl phenyl ring is almost coplanar with the phenanthroline fused imidazole tetracyclic system (dihedral angle of 11.02 (6)°) while methoxy phenyl ring is almost perpendicular (dihedral angle of 87.65 (6)°).

The maximum deviation of C9 atom from the mean plane of the tetracyclic phenantherene fused imidazole ring is 0.078 (2)° and that of C29 atom from the methoxy phenyl ring is -0.043 (3)°. The C22 atom of the trifluromethyl phenyl ring is deviated by -0.040 (2)°.

There are intramolecular C3—H3 ···π and C17—H17···π (methoxyphenyl ring system) interactions as well as an intermolecular C10—H10···π interaction involving the phenanthroline ring (at the symmetry code x, 1/2 - y, 1/2 + z). There is an intermolecular ππ interaction involving the central ring phenanthroline ring and the trifluoromethyl phenyl ring (Cg···Cg 3.685 Å, 1-x, -y, 2-z). In addition there C—H···N out-of-plane interactions linking the molecules into dimers as shown in Fig. 2.

Related literature top

For background to the supramolecular architecture of phenanthroline compounds, see: Lehn (1995). For metal sensors, see: Walters et al. (2000). For molecular electronics, see: Peng et al. (1997). For photo sensitizers see: Hara et al. (2001). For closely related structures, see: Sathishkumar et al. (2013).

.

Experimental top

A mixture of phenanthrene-9,10-dione (1.0 g,4.8 mmol), ammonium acetate (1.48 g,19.2 mmol), 4-trifluromethylbenzaldehyde(0.83 g,4.8 mmol) and 4-methoxyaniline (2.95 g,24 mmol) have been refluxed in ethanol (20 mL) at 80°C. The reaction was monitored by TLC and purified by column chromatography using petroleum ether:ethyl acetate (9:1) as the eluent.Yield: 0.74 g (51%)

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H= 0.93 - 0.97 Å,and Uiso(H) = 1.3Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A diagram showing the C-H···N out of plane π interactions linking molecules into dimers.A packing diagram for (I) is shown.
1-(4-Methoxyphenyl)-2-[4-(trifluromethyl)phenyl]-1H-phenanthro[9,10-d]imidazole top
Crystal data top
C29H19F3N2OF(000) = 968
Mr = 468.46Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5131 reflections
a = 11.7063 (9) Åθ = 1.8–27.6°
b = 20.2301 (16) ŵ = 0.10 mm1
c = 9.5419 (8) ÅT = 173 K
β = 99.725 (2)°Block, colourless
V = 2227.2 (3) Å30.32 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5128 independent reflections
Radiation source: fine-focus sealed tube3511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Ω and φ scanθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1514
Tmin = 0.956, Tmax = 0.999k = 026
24449 measured reflectionsl = 012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.6328P]
where P = (Fo2 + 2Fc2)/3
5128 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C29H19F3N2OV = 2227.2 (3) Å3
Mr = 468.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7063 (9) ŵ = 0.10 mm1
b = 20.2301 (16) ÅT = 173 K
c = 9.5419 (8) Å0.32 × 0.29 × 0.25 mm
β = 99.725 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5128 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3511 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.999Rint = 0.032
24449 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.18 e Å3
S = 1.01Δρmin = 0.24 e Å3
5128 reflectionsAbsolute structure: ?
317 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.94082 (11)0.18352 (6)0.83630 (17)0.0945 (5)
F21.03787 (11)0.09609 (7)0.88946 (19)0.1026 (5)
F30.97313 (14)0.11886 (9)0.67561 (17)0.1112 (6)
O10.24682 (11)0.21387 (6)0.47694 (14)0.0615 (4)
N10.41440 (11)0.01373 (6)0.76779 (13)0.0381 (3)
N20.53956 (11)0.08671 (6)0.88301 (14)0.0414 (3)
C10.34962 (13)0.06745 (7)0.80056 (16)0.0375 (3)
C20.22709 (13)0.08118 (8)0.77095 (16)0.0404 (4)
C30.14290 (15)0.04019 (9)0.69130 (19)0.0516 (4)
H30.16560.00090.65650.062*
C40.02892 (16)0.05872 (11)0.6633 (2)0.0625 (5)
H40.02680.03060.60920.075*
C50.00549 (16)0.11848 (11)0.7138 (2)0.0674 (6)
H50.08460.13130.69380.081*
C60.07410 (16)0.15882 (10)0.7921 (2)0.0591 (5)
H60.04890.19950.82600.071*
C70.19225 (14)0.14223 (8)0.82452 (17)0.0439 (4)
C80.27615 (14)0.18711 (8)0.90664 (17)0.0435 (4)
C90.24350 (17)0.24581 (9)0.96904 (19)0.0546 (4)
H90.16370.25710.95800.066*
C100.32367 (19)0.28690 (9)1.0449 (2)0.0626 (5)
H100.29890.32601.08610.075*
C110.44104 (19)0.27210 (9)1.0624 (2)0.0621 (5)
H110.49640.30111.11460.075*
C120.47650 (16)0.21546 (8)1.00403 (18)0.0519 (4)
H120.55680.20531.01550.062*
C130.39540 (14)0.17238 (7)0.92748 (16)0.0410 (4)
C140.42898 (13)0.11102 (7)0.87125 (16)0.0387 (3)
C150.52887 (13)0.02806 (7)0.82138 (16)0.0380 (3)
C160.63143 (13)0.01355 (7)0.81555 (16)0.0388 (3)
C170.62932 (15)0.07882 (8)0.76912 (19)0.0505 (4)
H170.55710.10000.73790.061*
C180.73102 (16)0.11314 (9)0.7679 (2)0.0543 (4)
H180.72800.15770.73600.065*
C190.83675 (14)0.08351 (8)0.81246 (18)0.0467 (4)
C200.84057 (15)0.01934 (9)0.8612 (2)0.0533 (4)
H200.91310.00130.89380.064*
C210.73894 (15)0.01501 (8)0.86267 (19)0.0494 (4)
H210.74260.05920.89670.059*
C220.94602 (17)0.11998 (10)0.8042 (2)0.0606 (5)
C230.36937 (13)0.04529 (7)0.69415 (16)0.0374 (3)
C240.36221 (14)0.04960 (8)0.54819 (17)0.0434 (4)
H240.38550.01350.49600.052*
C250.32095 (15)0.10681 (8)0.47918 (18)0.0482 (4)
H250.31650.11020.37910.058*
C260.28607 (13)0.15923 (8)0.55452 (18)0.0450 (4)
C270.29213 (15)0.15426 (8)0.70017 (19)0.0502 (4)
H270.26760.19010.75230.060*
C280.33403 (15)0.09708 (8)0.76958 (18)0.0460 (4)
H280.33840.09360.86960.055*
C290.2023 (2)0.26684 (12)0.5502 (3)0.0963 (9)
H29A0.17610.30250.48300.144*
H29B0.13690.25100.59290.144*
H29C0.26330.28340.62510.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0725 (8)0.0575 (8)0.1538 (14)0.0215 (6)0.0206 (9)0.0119 (8)
F20.0504 (7)0.0934 (10)0.1529 (14)0.0193 (7)0.0148 (8)0.0329 (9)
F30.0985 (11)0.1497 (14)0.0970 (11)0.0515 (10)0.0497 (9)0.0126 (10)
O10.0598 (8)0.0564 (8)0.0657 (8)0.0134 (6)0.0028 (6)0.0200 (6)
N10.0384 (7)0.0357 (6)0.0391 (7)0.0013 (5)0.0033 (5)0.0015 (5)
N20.0398 (7)0.0414 (7)0.0417 (7)0.0010 (6)0.0033 (6)0.0023 (6)
C10.0414 (8)0.0365 (8)0.0347 (8)0.0008 (6)0.0067 (6)0.0039 (6)
C20.0397 (8)0.0431 (8)0.0383 (8)0.0010 (7)0.0062 (6)0.0059 (7)
C30.0422 (9)0.0547 (10)0.0570 (11)0.0020 (8)0.0058 (8)0.0037 (8)
C40.0418 (10)0.0735 (13)0.0690 (13)0.0058 (9)0.0002 (9)0.0066 (10)
C50.0391 (10)0.0775 (14)0.0831 (15)0.0087 (10)0.0035 (9)0.0001 (12)
C60.0470 (10)0.0600 (11)0.0709 (13)0.0087 (9)0.0118 (9)0.0003 (10)
C70.0431 (9)0.0467 (9)0.0432 (9)0.0031 (7)0.0112 (7)0.0065 (7)
C80.0504 (9)0.0427 (8)0.0392 (8)0.0019 (7)0.0127 (7)0.0045 (7)
C90.0592 (11)0.0505 (10)0.0568 (11)0.0083 (9)0.0175 (9)0.0018 (8)
C100.0811 (14)0.0501 (10)0.0589 (12)0.0058 (10)0.0186 (10)0.0136 (9)
C110.0718 (13)0.0532 (11)0.0610 (12)0.0081 (10)0.0102 (10)0.0159 (9)
C120.0549 (10)0.0471 (9)0.0536 (10)0.0038 (8)0.0083 (8)0.0082 (8)
C130.0482 (9)0.0392 (8)0.0363 (8)0.0009 (7)0.0086 (7)0.0016 (6)
C140.0402 (8)0.0379 (8)0.0375 (8)0.0014 (7)0.0054 (6)0.0020 (6)
C150.0391 (8)0.0395 (8)0.0344 (8)0.0031 (7)0.0033 (6)0.0014 (6)
C160.0412 (8)0.0412 (8)0.0339 (8)0.0003 (7)0.0059 (6)0.0029 (6)
C170.0427 (9)0.0438 (9)0.0625 (11)0.0007 (7)0.0018 (8)0.0029 (8)
C180.0524 (10)0.0424 (9)0.0665 (12)0.0042 (8)0.0053 (9)0.0037 (8)
C190.0447 (9)0.0482 (9)0.0470 (9)0.0067 (8)0.0073 (7)0.0049 (7)
C200.0404 (9)0.0550 (10)0.0629 (11)0.0003 (8)0.0040 (8)0.0046 (9)
C210.0458 (9)0.0446 (9)0.0562 (10)0.0001 (8)0.0041 (8)0.0088 (8)
C220.0517 (11)0.0564 (11)0.0738 (14)0.0082 (9)0.0105 (10)0.0025 (10)
C230.0356 (8)0.0366 (8)0.0385 (8)0.0016 (6)0.0023 (6)0.0017 (6)
C240.0452 (9)0.0450 (9)0.0388 (9)0.0016 (7)0.0043 (7)0.0057 (7)
C250.0504 (10)0.0563 (10)0.0355 (9)0.0002 (8)0.0003 (7)0.0043 (7)
C260.0357 (8)0.0465 (9)0.0503 (10)0.0025 (7)0.0002 (7)0.0086 (7)
C270.0546 (10)0.0447 (9)0.0513 (10)0.0127 (8)0.0091 (8)0.0011 (8)
C280.0541 (10)0.0470 (9)0.0370 (8)0.0083 (8)0.0081 (7)0.0012 (7)
C290.108 (2)0.0749 (15)0.112 (2)0.0536 (15)0.0387 (16)0.0358 (14)
Geometric parameters (Å, º) top
F1—C221.325 (2)C11—H110.9500
F2—C221.325 (2)C12—C131.400 (2)
F3—C221.319 (2)C12—H120.9500
O1—C261.3661 (19)C13—C141.433 (2)
O1—C291.425 (3)C15—C161.475 (2)
N1—C151.3819 (19)C16—C211.389 (2)
N1—C11.3907 (19)C16—C171.392 (2)
N1—C231.4395 (19)C17—C181.380 (2)
N2—C151.3209 (19)C17—H170.9500
N2—C141.371 (2)C18—C191.376 (2)
C1—C141.372 (2)C18—H180.9500
C1—C21.441 (2)C19—C201.377 (2)
C2—C31.408 (2)C19—C221.490 (2)
C2—C71.423 (2)C20—C211.380 (2)
C3—C41.368 (2)C20—H200.9500
C3—H30.9500C21—H210.9500
C4—C51.386 (3)C23—C281.374 (2)
C4—H40.9500C23—C241.384 (2)
C5—C61.363 (3)C24—C251.378 (2)
C5—H50.9500C24—H240.9500
C6—C71.406 (2)C25—C261.381 (2)
C6—H60.9500C25—H250.9500
C7—C81.464 (2)C26—C271.383 (2)
C8—C131.408 (2)C27—C281.381 (2)
C8—C91.410 (2)C27—H270.9500
C9—C101.366 (3)C28—H280.9500
C9—H90.9500C29—H29A0.9800
C10—C111.388 (3)C29—H29B0.9800
C10—H100.9500C29—H29C0.9800
C11—C121.369 (2)
C26—O1—C29117.39 (15)N1—C15—C16127.66 (13)
C15—N1—C1106.52 (12)C21—C16—C17117.66 (15)
C15—N1—C23127.36 (12)C21—C16—C15116.69 (14)
C1—N1—C23126.12 (13)C17—C16—C15125.64 (14)
C15—N2—C14105.58 (13)C18—C17—C16120.74 (16)
C14—C1—N1105.24 (13)C18—C17—H17119.6
C14—C1—C2122.77 (14)C16—C17—H17119.6
N1—C1—C2131.98 (14)C19—C18—C17120.69 (16)
C3—C2—C7119.22 (15)C19—C18—H18119.7
C3—C2—C1125.09 (15)C17—C18—H18119.7
C7—C2—C1115.66 (14)C18—C19—C20119.41 (16)
C4—C3—C2120.96 (17)C18—C19—C22120.21 (16)
C4—C3—H3119.5C20—C19—C22120.36 (16)
C2—C3—H3119.5C19—C20—C21119.95 (16)
C3—C4—C5120.16 (18)C19—C20—H20120.0
C3—C4—H4119.9C21—C20—H20120.0
C5—C4—H4119.9C20—C21—C16121.52 (16)
C6—C5—C4120.07 (18)C20—C21—H21119.2
C6—C5—H5120.0C16—C21—H21119.2
C4—C5—H5120.0F3—C22—F2105.49 (18)
C5—C6—C7122.25 (18)F3—C22—F1105.03 (17)
C5—C6—H6118.9F2—C22—F1106.03 (17)
C7—C6—H6118.9F3—C22—C19112.60 (17)
C6—C7—C2117.35 (16)F2—C22—C19113.69 (17)
C6—C7—C8121.05 (16)F1—C22—C19113.25 (16)
C2—C7—C8121.58 (14)C28—C23—C24120.45 (14)
C13—C8—C9116.85 (16)C28—C23—N1119.65 (13)
C13—C8—C7120.25 (14)C24—C23—N1119.91 (13)
C9—C8—C7122.90 (16)C25—C24—C23119.38 (15)
C10—C9—C8121.69 (18)C25—C24—H24120.3
C10—C9—H9119.2C23—C24—H24120.3
C8—C9—H9119.2C24—C25—C26120.45 (15)
C9—C10—C11120.66 (17)C24—C25—H25119.8
C9—C10—H10119.7C26—C25—H25119.8
C11—C10—H10119.7O1—C26—C25116.18 (15)
C12—C11—C10119.56 (18)O1—C26—C27123.97 (16)
C12—C11—H11120.2C25—C26—C27119.85 (15)
C10—C11—H11120.2C28—C27—C26119.76 (15)
C11—C12—C13120.53 (18)C28—C27—H27120.1
C11—C12—H12119.7C26—C27—H27120.1
C13—C12—H12119.7C23—C28—C27120.10 (15)
C12—C13—C8120.70 (15)C23—C28—H28120.0
C12—C13—C14121.98 (15)C27—C28—H28120.0
C8—C13—C14117.29 (14)O1—C29—H29A109.5
N2—C14—C1111.17 (13)O1—C29—H29B109.5
N2—C14—C13126.49 (14)H29A—C29—H29B109.5
C1—C14—C13122.31 (14)O1—C29—H29C109.5
N2—C15—N1111.48 (13)H29A—C29—H29C109.5
N2—C15—C16120.86 (13)H29B—C29—H29C109.5
C15—N1—C1—C140.30 (16)C8—C13—C14—C10.5 (2)
C23—N1—C1—C14179.48 (13)C14—N2—C15—N10.87 (17)
C15—N1—C1—C2179.13 (15)C14—N2—C15—C16179.16 (13)
C23—N1—C1—C21.7 (2)C1—N1—C15—N20.75 (16)
C14—C1—C2—C3175.80 (16)C23—N1—C15—N2179.92 (13)
N1—C1—C2—C32.9 (3)C1—N1—C15—C16179.28 (14)
C14—C1—C2—C72.3 (2)C23—N1—C15—C160.1 (2)
N1—C1—C2—C7179.08 (15)N2—C15—C16—C217.2 (2)
C7—C2—C3—C40.9 (3)N1—C15—C16—C21172.77 (15)
C1—C2—C3—C4177.09 (17)N2—C15—C16—C17171.79 (15)
C2—C3—C4—C50.2 (3)N1—C15—C16—C178.2 (3)
C3—C4—C5—C60.4 (3)C21—C16—C17—C181.2 (3)
C4—C5—C6—C70.2 (3)C15—C16—C17—C18179.86 (16)
C5—C6—C7—C20.6 (3)C16—C17—C18—C190.1 (3)
C5—C6—C7—C8178.84 (18)C17—C18—C19—C201.2 (3)
C3—C2—C7—C61.1 (2)C17—C18—C19—C22177.10 (18)
C1—C2—C7—C6177.11 (15)C18—C19—C20—C211.1 (3)
C3—C2—C7—C8179.34 (15)C22—C19—C20—C21177.20 (17)
C1—C2—C7—C81.2 (2)C19—C20—C21—C160.1 (3)
C6—C7—C8—C13174.43 (15)C17—C16—C21—C201.3 (3)
C2—C7—C8—C133.8 (2)C15—C16—C21—C20179.66 (16)
C6—C7—C8—C96.1 (2)C18—C19—C22—F380.8 (2)
C2—C7—C8—C9175.70 (15)C20—C19—C22—F397.5 (2)
C13—C8—C9—C100.7 (3)C18—C19—C22—F2159.34 (18)
C7—C8—C9—C10179.85 (17)C20—C19—C22—F222.4 (3)
C8—C9—C10—C110.3 (3)C18—C19—C22—F138.2 (3)
C9—C10—C11—C120.6 (3)C20—C19—C22—F1143.46 (19)
C10—C11—C12—C130.2 (3)C15—N1—C23—C2892.07 (19)
C11—C12—C13—C81.3 (3)C1—N1—C23—C2886.95 (19)
C11—C12—C13—C14176.70 (16)C15—N1—C23—C2487.77 (19)
C9—C8—C13—C121.5 (2)C1—N1—C23—C2493.20 (18)
C7—C8—C13—C12179.04 (15)C28—C23—C24—C251.0 (2)
C9—C8—C13—C14176.61 (14)N1—C23—C24—C25178.82 (14)
C7—C8—C13—C142.9 (2)C23—C24—C25—C260.5 (3)
C15—N2—C14—C10.67 (17)C29—O1—C26—C25175.49 (19)
C15—N2—C14—C13177.31 (14)C29—O1—C26—C274.5 (3)
N1—C1—C14—N20.23 (17)C24—C25—C26—O1179.80 (15)
C2—C1—C14—N2178.74 (13)C24—C25—C26—C270.2 (3)
N1—C1—C14—C13177.86 (13)O1—C26—C27—C28179.47 (16)
C2—C1—C14—C133.2 (2)C25—C26—C27—C280.6 (3)
C12—C13—C14—N20.2 (2)C24—C23—C28—C270.7 (2)
C8—C13—C14—N2178.24 (15)N1—C23—C28—C27179.15 (15)
C12—C13—C14—C1177.59 (15)C26—C27—C28—C230.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N2i0.952.553.402 (2)150
C3—H3···Cg10.952.863.719 (2)154
C10—H10···Cg2ii0.952.693.419 (2)136
C17—H17···Cg10.952.743.6042 (2)154
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N2i0.95002.55003.402 (2)150.00
C3—H3···Cg10.95002.86003.719 (2)154.00
C10—H10···Cg2ii0.95002.69003.419 (2)136.00
C17—H17···Cg10.95002.74003.6042 (2)154.00
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1/2, z1/2.
Acknowledgements top

The authors thank Dr Babu Varghese, Senior Scientific Officer SAIF, IIT Chennai, India, for carrying out the data collection.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hara, K., Sugihara, H., Tachibana, Y., Islam, A., Yanagida, M., Sayama, K. & Arakawa, H. (2001). Langmuir, 17, 5992–5999.

Lehn, J. M. (1995). In Supramolecular Chemistry, Concept of Perspectives. Weinheim: VCH.

Peng, Z., Gharavi, A. R. & Yu, L. J. (1997). J. Am. Chem. Soc. 119, 4622–4632.

Sathishkumar, R., Mohandas, T., Sakthivel, P. & Jayabharathi, J. (2013). Acta Cryst. E69, o367.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Walters, K. A., Trouillrt, L., Guillerez, S. & Schanze, K. S. (2000). Inorg. Chem. 39, 5496–5509.