

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Chloro-3-[(2-oxo-2H-chromen-6-yl)amino]naphthalene-1,4-dione

Mikaelly O. B. Sousa, Gleiciani Q. Silveira and Javier A. G. Gomez*

Departamento de Química Inorgânica, Universidade Federal Fluminense, Niterói, CEP 24-020-140, Rio de Janeiro, Brazil Correspondence e-mail: jagomez@vm.uff.br

Received 10 July 2013; accepted 18 July 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.065; data-to-parameter ratio = 15.6.

In the title compound, $C_{19}H_{10}CINO_4$, the dihedral angle between the naphthoquinone and coumarin rings is 48.99 (6)°. In the crystal, molecules are linked by strong $N-H \cdots O$ hydrogen bonds into chains with graph-set motif C(6) along [101]. The packing also features $\pi - \pi$ stacking interactions between naphthoquinone and coumarin rings [centroid-tocentroid distances = 3.7679(12) and 3.6180(13) Å].

Related literature

For related compounds see: Rózsa et al. (1989); Ito et al. (1993); Ishikawa et al. (1995); Padwal et al. (2011). For reference structural data, see: Ibis & Deniz (2012); Resende & Gomez (2012). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental

Crystal data C₁₉H₁₀ClNO₄ M = 351.73Monoclinic, Cc a = 10.9371 (5) Å b = 10.4462 (5) Åc = 13.5104 (7) Å $\beta = 108.533 (5)^{\circ}$

 $V = 1463.53 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 150 K $0.23 \times 0.13 \times 0.07 \text{ mm}$ 15281 measured reflections

 $R_{\rm int} = 0.055$

3527 independent reflections

2714 reflections with $I > 2\sigma(I)$

Flack (1983),

Data collection

```
Oxford Xcalibur Gemini Ultra
  diffractometer with Atlas
  detector
Absorption correction: multi-scan
  (CrysAlis PRO; Agilent, 2011)
  T_{\min} = 0.947, T_{\max} = 1
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.065$	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
S = 0.91	Absolute structure: Flack (198
3527 reflections	1217 Friedel pairs
226 parameters	Absolute structure parameter:
2 restraints	-0.07 (5)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^i$	0.86	2.21	3.015 (2)	157
Symmetry code: (i)	$x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$	$-\frac{1}{2}$.		

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

This work was supported by the Brazilian agencies Proppi-UFF, FAPERJ, Scholarship Postgraduate Students Agreement Program - PEC-PG, CAPES/CNPq - Brazil and CAPES. The authors thank the X-ray diffraction laboratory LabCri-UFMG for the data collection, Professor Jackson A. L. C. Resende (IQ-UFF), and Professor M. D. Vargas (IQ-UFF) for her help and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2446).

References

- Agilent (2011). CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ibis, C. & Deniz, N. G. (2012). J. Chem. Sci. 124, 657-667.
- Ishikawa, T., Kotake, K. & Ishii, H. (1995). Chem. Pharm. Bull. 43, 1039-1041. Ito, C., Ono, T., Tanaka, E., Takemura, Y., Nakata, T., Uchida, H., Ju-ichi, M.,
- Omura, M. & Furukawa, H. (1993). Chem. Pharm. Bull. 41, 205-207
- Padwal, J., Lewis, W. & Moody, C. J. (2011). Org. Biomol. Chem. 9, 3484-3493. Resende, J. A. L. C. & Gomez, J. A. (2012). Acta Cryst. E68, o2361.
- Rózsa, Z., Mester, I., Reisch, R. & Szendrei, K. (1989). Planta Med. 55, 68-69. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1317 [doi:10.1107/S1600536813019922]

2-Chloro-3-[(2-oxo-2H-chromen-6-yl)amino]naphthalene-1,4-dione

Mikaelly O. B. Sousa, Gleiciani Q. Silveira and Javier A. G. Gomez

S1. Comment

There are very few examples in the literature of coumarin–naphthoquinone conjugates, most of them (direct C—C bond) are from natural sources (Rózsa *et al.*, 1989; Ito *et al.*, 1993; Ishikawa *et al.*, 1995; Padwal *et al.*, 2011) and only one synthetic, the coumarin–naphthoquinone hybrid linked through sulfur spacer attached at 7-position of the coumarin ring and 2-position of the naphthoquinone [2-(7-sulphanyl-4-methyl-coumarinyl)-3-(1-ethoxy)-1,4-naphthoquinone; Ibis & Deniz, 2012]. The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with 6-amino-coumarin. The average C—C, C—O, C=O and C—N bond distances are in agreement with those observed in *tert*-butyl *N*-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen2-yl)amino]propyl}carbamate (Resende & Gomez, 2012). The angle between the naphthoquinone and coumarin planes is 48.99 (6)°. The molecular structure is stabilized by one intramolecular N—H···O hydrogen bond. In the crystal, molecules are linked by strong N—H···O hydrogen bonds into chains with graph-set notation *C*(6) along [101] (Bernstein *et al.*, 1995). The packing also features π - π stacking interactions between naphthoquinone and coumarin rings [centroid–centroid distances = 3.7679 (12) and 3.6180 (13) Å]. The dihedral angle between naphthoquinone and coumarin rings is 48.99 (6)°.

S2. Experimental

2,3-Dichloro-1,4-naphthoquinone (681 mg, 3 mmol) was added to a solution of 6-aminocoumarin (579.6 mg, 3.6 mmol) in DMF (10 ml). The mixture was stirred at 60–70°C for 72 h. The solvent was evaporated under reduced pressure and the crude product was purified through recrystallization in hexane, resulting in a red solid. Yield: 833.8 mg, 79%. Single crystals suitable for a study of X-ray diffraction of compound (I) were obtained at 4°C by slow evaporation of an aceto-nitrile–dichloromethane (1:1) solution. m.p. 301°C. Found: C, 64.12; H, 2.91; N, 4.14. Calc. for $C_{19}H_{10}CINO_4$: C, 64.51; H, 3.42; N, 3.96%. 1H NMR (300 MHz, d6-DMSO): δ 8.16 (d, J = 7.5 Hz, 2H), 8.13 (d, J = 9.6 Hz, 1H), 8.00 (t, J = 7.5 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 7.58–7.52 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H), 6.62 (d, J = 9.6 Hz, 1H). 13 C NMR - APT (d6-DMSO, 75 MHz): δ 180.0, 176.8, 160.0, 150.4, 144.0, 143.3, 135.5, 134.8, 133.4, 131.9, 130.3, 128.0, 126.7, 126.2, 122.7, 118.2, 116.7, 116.0, 114.7. IR (KBr): *v*C=O (quin.) = 1672, *v*C=O (ester) = 1720, *v*C—O (ester) = 1568, 1290, *v*N — H = 3294, *v*C—H (arom.) = 3080. UV–Vis [CH₃CN; λ /nm (log ε)]: 277 (4.10), 333 (3.28), 469 (3.10).

S3. Refinement

All C-bound H atoms were placed in calculated idealized positions. The N-bound H atom was placed in the calculated idealized position. All H atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2Ueq using a riding model.$

Figure 1

ORTEP representation (Farrugia, 2012) of the molecular structure of compound (I) with the numbering and displacement ellipsoids (at 30% probability level).

Figure 2

Packing diagram of (I), showing the formation of the C(6) chain along [101]. Hydrogen-bonds are shown by dashed lines.

2-Chloro-3-[(2-oxo-2H-chromen-6-yl)amino]naphthalene-1,4-dione

Crystal data	
$C_{19}H_{10}CINO_4$	$V = 1463.53 (12) \text{ Å}^3$
$M_r = 351.73$	Z = 4
Monoclinic, Cc	F(000) = 720
Hall symbol: C -2yc	$D_{\rm x} = 1.596 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.9371 (5) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 10.4462 (5) Å	Cell parameters from 5237 reflections
c = 13.5104 (7) Å	$\theta = 2.0-29.5^{\circ}$
$\beta = 108.533 \ (5)^{\circ}$	$\mu = 0.29 \text{ mm}^{-1}$

T = 150 KPrism, violet

Data collection

15281 measured reflections
3527 independent reflections
2714 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.055$
$\theta_{\rm max} = 28.5^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
$h = -14 \rightarrow 14$
$k = -13 \rightarrow 13$
$l = -18 \rightarrow 18$
Hydrogen site location: inferred from
neighbouring sites

 $0.23 \times 0.13 \times 0.07 \text{ mm}$

neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.029P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983), 1217 Friedel pairs
Absolute structure parameter: -0.07 (5)

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl	0.31971 (5)	0.30204 (5)	0.61162 (4)	0.02411 (12)	
O4	0.57743 (16)	-0.02583 (15)	0.22630 (13)	0.0366 (4)	
03	0.39509 (13)	0.03816 (14)	0.24617 (11)	0.0246 (4)	
01	-0.11020 (14)	0.09274 (14)	0.55900 (12)	0.0292 (4)	
O2	0.31861 (14)	0.29316 (15)	0.82346 (11)	0.0279 (4)	
N1	0.07529 (16)	0.14446 (17)	0.48249 (13)	0.0208 (4)	
H1	-0.0048	0.1431	0.4453	0.025*	
C2	0.20172 (19)	0.23128 (19)	0.65296 (15)	0.0182 (5)	
C3	0.09915 (19)	0.17092 (18)	0.58553 (15)	0.0179 (5)	
C14	0.3192 (2)	0.0628 (2)	0.30908 (16)	0.0197 (5)	

C9	0.11248 (18)	0.2050 (2)	0.80240 (15)	0.0182 (4)
C1	0.2201 (2)	0.2472 (2)	0.76414 (17)	0.0187 (4)
C11	0.16331 (19)	0.11893 (19)	0.42803 (15)	0.0183 (4)
C10	-0.00065 (19)	0.1522 (2)	0.73331 (16)	0.0192 (5)
C13	0.2008 (2)	0.1182 (2)	0.26179 (16)	0.0214 (5)
H13	0.173	0.1363	0.1891	0.026*
C4	-0.0132 (2)	0.13481 (18)	0.62218 (16)	0.0191 (5)
C12	0.1236 (2)	0.14658 (19)	0.32122 (16)	0.0211 (5)
H12	0.042	0.1856	0.2895	0.025*
C15	0.36188 (19)	0.03463 (19)	0.41469 (17)	0.0195 (5)
C16	0.28168 (19)	0.06194 (19)	0.47438 (16)	0.0202 (5)
H16	0.3085	0.0414	0.5466	0.024*
C19	0.5182 (2)	-0.0122 (2)	0.28635 (19)	0.0269 (5)
C18	0.5609 (2)	-0.0425 (2)	0.39665 (18)	0.0258 (5)
H18	0.6438	-0.0795	0.4265	0.031*
C8	0.1236 (2)	0.2211 (2)	0.90669 (17)	0.0240 (5)
H8	0.1993	0.258	0.9536	0.029*
C5	-0.1001 (2)	0.1138 (2)	0.76989 (17)	0.0243 (5)
Н5	-0.1765	0.0775	0.7235	0.029*
C6	-0.0869 (2)	0.1289 (2)	0.87452 (18)	0.0265 (5)
H6	-0.1543	0.1017	0.9	0.032*
C7	0.0230 (2)	0.1829 (2)	0.94223 (17)	0.0264 (5)
H7	0.0301	0.1942	1.0136	0.032*
C17	0.4889 (2)	-0.0209 (2)	0.45813 (18)	0.0249 (5)
H17	0.5209	-0.0419	0.5302	0.03*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0214 (2)	0.0303 (3)	0.0225 (2)	-0.0092 (3)	0.0095 (2)	-0.0010 (3)
O4	0.0313 (10)	0.0461 (11)	0.0399 (10)	0.0050 (8)	0.0221 (8)	-0.0034 (8)
03	0.0222 (8)	0.0287 (9)	0.0246 (9)	0.0013 (7)	0.0101 (7)	-0.0018 (6)
01	0.0234 (9)	0.0360 (10)	0.0286 (9)	-0.0082 (7)	0.0091 (7)	-0.0020 (7)
O2	0.0187 (8)	0.0391 (10)	0.0252 (8)	-0.0062 (7)	0.0060 (7)	-0.0032 (7)
N1	0.0147 (9)	0.0263 (10)	0.0214 (10)	-0.0009 (7)	0.0055 (8)	-0.0011 (7)
C2	0.0175 (11)	0.0185 (12)	0.0225 (12)	-0.0010 (8)	0.0120 (9)	0.0029 (8)
C3	0.0188 (11)	0.0156 (11)	0.0196 (11)	0.0036 (9)	0.0065 (9)	0.0045 (8)
C14	0.0191 (11)	0.0205 (11)	0.0206 (11)	-0.0041 (9)	0.0079 (9)	-0.0025 (9)
C9	0.0186 (11)	0.0159 (10)	0.0226 (11)	0.0040 (9)	0.0099 (9)	0.0033 (9)
C1	0.0152 (10)	0.0172 (11)	0.0231 (11)	0.0033 (8)	0.0053 (9)	0.0011 (8)
C11	0.0190 (10)	0.0176 (11)	0.0199 (11)	-0.0042 (9)	0.0085 (9)	-0.0047 (9)
C10	0.0170 (11)	0.0149 (11)	0.0279 (12)	0.0057 (8)	0.0103 (9)	0.0041 (9)
C13	0.0230 (11)	0.0235 (12)	0.0165 (11)	-0.0028 (9)	0.0045 (9)	-0.0022 (9)
C4	0.0177 (11)	0.0140 (11)	0.0253 (12)	0.0014 (9)	0.0066 (10)	0.0015 (9)
C12	0.0166 (10)	0.0204 (12)	0.0235 (12)	-0.0001 (9)	0.0027 (9)	-0.0007 (9)
C15	0.0160 (11)	0.0161 (11)	0.0261 (12)	-0.0014 (8)	0.0065 (9)	-0.0005 (8)
C16	0.0210 (11)	0.0207 (12)	0.0186 (11)	0.0007 (9)	0.0060 (9)	-0.0004 (8)
C19	0.0231 (12)	0.0208 (12)	0.0390 (14)	0.0007 (10)	0.0127 (11)	-0.0014 (10)

supporting information

C18	0.0183 (12)	0.0252 (13)	0.0328 (13)	0.0053 (9)	0.0067 (10)	0.0037 (10)
C8	0.0224 (12)	0.0268 (13)	0.0231 (12)	0.0055 (9)	0.0076 (10)	0.0029 (9)
C5	0.0201 (11)	0.0201 (12)	0.0360 (14)	0.0017 (9)	0.0135 (10)	0.0020 (10)
C6	0.0232 (12)	0.0298 (14)	0.0338 (14)	0.0067 (10)	0.0194 (11)	0.0070 (10)
C7	0.0270 (12)	0.0339 (15)	0.0230 (12)	0.0098 (11)	0.0146 (10)	0.0059 (10)
C17	0.0245 (13)	0.0222 (12)	0.0262 (12)	0.0014 (10)	0.0054 (11)	0.0028 (10)

Geometric parameters (Å, °)

Cl—C2	1.7268 (19)	C10—C5	1.389 (3)
O4—C19	1.197 (2)	C10—C4	1.475 (3)
O3—C19	1.385 (3)	C13—C12	1.370 (3)
O3—C14	1.387 (2)	C13—H13	0.95
O1—C4	1.213 (2)	C12—H12	0.95
O2—C1	1.219 (3)	C15—C16	1.397 (3)
N1—C3	1.361 (2)	C15—C17	1.446 (3)
N1—C11	1.411 (2)	C16—H16	0.95
N1—H1	0.86	C19—C18	1.448 (3)
C2—C3	1.355 (3)	C18—C17	1.333 (3)
C2—C1	1.460 (3)	C18—H18	0.95
C3—C4	1.511 (3)	C8—C7	1.391 (3)
C14—C13	1.376 (3)	C8—H8	0.95
C14—C15	1.385 (3)	C5—C6	1.384 (3)
C9—C8	1.386 (3)	С5—Н5	0.95
C9—C10	1.404 (3)	C6—C7	1.379 (3)
C9—C1	1.494 (3)	С6—Н6	0.95
C11—C16	1.381 (3)	С7—Н7	0.95
C11—C12	1.399 (3)	C17—H17	0.95
C19—O3—C14	121.75 (17)	C13—C12—C11	120.85 (19)
C3—N1—C11	129.15 (18)	C13—C12—H12	119.6
C3—N1—H1	115.4	C11—C12—H12	119.6
C11—N1—H1	115.4	C14—C15—C16	118.94 (18)
C3—C2—C1	123.94 (18)	C14—C15—C17	117.96 (18)
C3—C2—C1	121.72 (15)	C16—C15—C17	123.1 (2)
C1—C2—C1	114.29 (15)	C11—C16—C15	119.77 (19)
C2—C3—N1	129.12 (18)	C11—C16—H16	120.1
C2—C3—C4	118.78 (17)	C15—C16—H16	120.1
N1—C3—C4	111.90 (17)	O4—C19—O3	116.6 (2)
C13—C14—C15	121.78 (18)	O4—C19—C18	127.2 (2)
C13—C14—O3	116.84 (18)	O3—C19—C18	116.22 (18)
C15—C14—O3	121.37 (18)	C17—C18—C19	122.9 (2)
C8—C9—C10	119.83 (18)	C17—C18—H18	118.6
C8—C9—C1	119.46 (18)	C19—C18—H18	118.6
C10—C9—C1	120.69 (17)	C9—C8—C7	119.5 (2)
O2—C1—C2	121.67 (19)	С9—С8—Н8	120.2
O2—C1—C9	121.19 (19)	С7—С8—Н8	120.2
C2—C1—C9	117.14 (18)	C6—C5—C10	119.4 (2)

C16 C11 C12	110 73 (18)	C6 C5 H5	120.3
C16_C11_N1	122 81 (18)	C_{10} C_{5} H_{5}	120.3
C12 $C11$ $N1$	117 36 (18)	C7 - C6 - C5	120.5 120.7(2)
C_{5} C_{10} C_{9}	120.07(10)	C7 C6 H6	120.7 (2)
$C_{5} = C_{10} = C_{4}$	120.07(19) 110.70(10)	$C_{1} = C_{0} = H_{0}$	119.7
$C_{2} = C_{10} = C_{4}$	119.79(19) 120.13(18)	$C_{5} = C_{0} = 110$	119.7 120.4(2)
$C_{9} = C_{10} = C_{4}$	120.13(10) 118.02(10)	$C_{0} - C_{7} - C_{8}$	120.4 (2)
$C_{12} = C_{13} = C_{14}$	110.92 (19)	C° C^{7} H^{7}	117.0
C12 - C13 - H13	120.5	$C_{0} - C_{1} - H_{1}$	119.0
C14C13H13	120.3	C18 - C17 - C13	119.8 (2)
01 - C4 - C10	122.55 (18)		120.1
01-C4-C3	118.71 (18)	C15-C17-H17	120.1
C10—C4—C3	118.74 (18)		
C1C2	-176.13 (19)	N1—C3—C4—O1	-2.7 (3)
Cl—C2—C3—N1	6.5 (3)	C2-C3-C4-C10	-7.3 (3)
C1—C2—C3—C4	9.5 (3)	N1-C3-C4-C10	177.40 (17)
Cl—C2—C3—C4	-167.80 (14)	C14—C13—C12—C11	-0.6 (3)
C11—N1—C3—C2	30.9 (3)	C16—C11—C12—C13	-0.2(3)
C11—N1—C3—C4	-154.41 (19)	N1-C11-C12-C13	-176.49 (18)
C19—O3—C14—C13	177.18 (19)	C13—C14—C15—C16	0.7 (3)
C19—O3—C14—C15	-1.9 (3)	O3—C14—C15—C16	179.77 (18)
C3—C2—C1—O2	174.1 (2)	C13—C14—C15—C17	-178.7 (2)
Cl—C2—C1—O2	-8.4 (3)	O3—C14—C15—C17	0.4 (3)
C3—C2—C1—C9	-6.0 (3)	C12—C11—C16—C15	1.2 (3)
Cl—C2—C1—C9	171.51 (14)	N1—C11—C16—C15	177.35 (18)
C8—C9—C1—O2	1.6 (3)	C14—C15—C16—C11	-1.5 (3)
C10—C9—C1—O2	179.98 (19)	C17—C15—C16—C11	177.8 (2)
C8—C9—C1—C2	-178.30(18)	C14—O3—C19—O4	-177.49(19)
C10-C9-C1-C2	0.1 (3)	C14-03-C19-C18	2.5 (3)
C3—N1—C11—C16	29.8 (3)	04-C19-C18-C17	178.2 (2)
C3—N1—C11—C12	-154.0(2)	O3—C19—C18—C17	-1.8(3)
C8-C9-C10-C5	-1.4(3)	C10-C9-C8-C7	1.0 (3)
C1-C9-C10-C5	-179.75(18)	C1—C9—C8—C7	179.39 (19)
C8-C9-C10-C4	179 97 (18)	C9-C10-C5-C6	05(3)
C1 - C9 - C10 - C4	16(3)	C4-C10-C5-C6	179 15 (19)
C_{15} C_{14} C_{13} C_{12}	0.4(3)	$C_{10} - C_{5} - C_{6} - C_{7}$	0.8 (3)
03-C14-C13-C12	-17874(18)	$C_{5} - C_{6} - C_{7} - C_{8}$	-1.2(3)
C_{5} C_{10} C_{4} C_{10}	3 3 (3)	C9-C8-C7-C6	0.3(3)
C9-C10-C4-O1	-1781(2)	C19 - C18 - C17 - C15	0.3(3)
C_{5} C_{10} C_{4} C_{10}	-176.81(17)	C_{14} C_{15} C_{17} C_{18}	0.7(3)
$C_{10} = C_{10} = C_{1-} = C$	10.01(17)	$C_{14} = C_{13} = C_{17} = C_{16}$	-1700(2)
$C_{2} = C_{10} = C_{4} = C_{3}$	1.7 (5)	010-013-017-010	1/9.0 (2)
02 - 03 - 04 - 01	1/2.37 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.86	2.21	3.015 (2)	157

Symmetry code: (i) x-1/2, -y+1/2, z-1/2.