organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-[(2-oxo-2H-chromen-6-yl)amino]­naphthalene-1,4-dione

aDepartamento de Química Inorgânica, Universidade Federal Fluminense, Niterói, CEP 24-020-140, Rio de Janeiro, Brazil
*Correspondence e-mail: jagomez@vm.uff.br

(Received 10 July 2013; accepted 18 July 2013; online 27 July 2013)

In the title compound, C19H10ClNO4, the dihedral angle between the naphtho­quinone and coumarin rings is 48.99 (6)°. In the crystal, mol­ecules are linked by strong N—H⋯O hydrogen bonds into chains with graph-set motif C(6) along [101]. The packing also features ππ stacking inter­actions between naphtho­quinone and coumarin rings [centroid-to-centroid distances = 3.7679 (12) and 3.6180 (13) Å].

Related literature

For related compounds see: Rózsa et al. (1989[Rózsa, Z., Mester, I., Reisch, R. & Szendrei, K. (1989). Planta Med. 55, 68-69.]); Ito et al. (1993[Ito, C., Ono, T., Tanaka, E., Takemura, Y., Nakata, T., Uchida, H., Ju-ichi, M., Omura, M. & Furukawa, H. (1993). Chem. Pharm. Bull. 41, 205-207.]); Ishikawa et al. (1995[Ishikawa, T., Kotake, K. & Ishii, H. (1995). Chem. Pharm. Bull. 43, 1039-1041.]); Padwal et al. (2011[Padwal, J., Lewis, W. & Moody, C. J. (2011). Org. Biomol. Chem. 9, 3484-3493.]). For reference structural data, see: Ibis & Deniz (2012[Ibis, C. & Deniz, N. G. (2012). J. Chem. Sci. 124, 657-667.]); Resende & Gomez (2012[Resende, J. A. L. C. & Gomez, J. A. (2012). Acta Cryst. E68, o2361.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H10ClNO4

  • Mr = 351.73

  • Monoclinic, C c

  • a = 10.9371 (5) Å

  • b = 10.4462 (5) Å

  • c = 13.5104 (7) Å

  • β = 108.533 (5)°

  • V = 1463.53 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.23 × 0.13 × 0.07 mm

Data collection
  • Oxford Xcalibur Gemini Ultra diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.947, Tmax = 1

  • 15281 measured reflections

  • 3527 independent reflections

  • 2714 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.065

  • S = 0.91

  • 3527 reflections

  • 226 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1217 Friedel pairs

  • Absolute structure parameter: −0.07 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.21 3.015 (2) 157
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

There are very few examples in the literature of coumarin–naphthoquinone conjugates, most of them (direct C—C bond) are from natural sources (Rózsa et al., 1989; Ito et al., 1993; Ishikawa et al., 1995; Padwal et al., 2011) and only one synthetic, the coumarin–naphthoquinone hybrid linked through sulfur spacer attached at 7-position of the coumarin ring and 2-position of the naphthoquinone [2-(7-sulphanyl-4-methyl-coumarinyl)-3-(1-ethoxy)-1,4-naphthoquinone; Ibis & Deniz, 2012]. The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with 6-aminocoumarin. The average C—C, C—O, CO and C—N bond distances are in agreement with those observed in tert-butyl N-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen2-yl)amino]propyl}carbamate (Resende & Gomez, 2012). The angle between the naphthoquinone and coumarin planes is 48.99 (6)°. The molecular structure is stabilized by one intramolecular N—H···O hydrogen bond. In the crystal, molecules are linked by strong N—H···O hydrogen bonds into chains with graph-set notation C(6) along [101] (Bernstein et al., 1995). The packing also features ππ stacking interactions between naphthoquinone and coumarin rings [centroid–centroid distances = 3.7679 (12) and 3.6180 (13) Å]. The dihedral angle between naphthoquinone and coumarin rings is 48.99 (6)°.

Related literature top

For related compounds see: Rózsa et al. (1989); Ito et al. (1993); Ishikawa et al. (1995); Padwal et al. (2011). For reference structural data, see: Ibis & Deniz (2012); Resende & Gomez (2012). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

2,3-Dichloro-1,4-naphthoquinone (681 mg, 3 mmol) was added to a solution of 6-aminocoumarin (579.6 mg, 3.6 mmol) in DMF (10 ml). The mixture was stirred at 60–70°C for 72 h. The solvent was evaporated under reduced pressure and the crude product was purified through recrystallization in hexane, resulting in a red solid. Yield: 833.8 mg, 79%. Single crystals suitable for a study of X-ray diffraction of compound (I) were obtained at 4°C by slow evaporation of an acetonitrile–dichloromethane (1:1) solution. m.p. 301°C. Found: C, 64.12; H, 2.91; N, 4.14. Calc. for C19H10ClNO4: C, 64.51; H, 3.42; N, 3.96%. 1H NMR (300 MHz, d6-DMSO): δ 8.16 (d, J = 7.5 Hz, 2H), 8.13 (d, J = 9.6 Hz, 1H), 8.00 (t, J = 7.5 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 7.58–7.52 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H), 6.62 (d, J = 9.6 Hz, 1H). 13 C NMR - APT (d6-DMSO, 75 MHz): δ 180.0, 176.8, 160.0, 150.4, 144.0, 143.3, 135.5, 134.8, 133.4, 131.9, 130.3, 128.0, 126.7, 126.2, 122.7, 118.2, 116.7, 116.0, 114.7. IR (KBr): νCO (quin.) = 1672, νCO (ester) = 1720, νC—O (ester) = 1568, 1290, νN—H = 3294, νC—H (arom.) = 3080. UV–Vis [CH3CN; λ/nm (log ε)]: 277 (4.10), 333 (3.28), 469 (3.10).

Refinement top

All C-bound H atoms were placed in calculated idealized positions. The N-bound H atom was placed in the calculated idealized position. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq using a riding model.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP representation (Farrugia, 2012) of the molecular structure of compound (I) with the numbering and displacement ellipsoids (at 30% probability level).
[Figure 2] Fig. 2. Packing diagram of (I), showing the formation of the C(6) chain along [101]. Hydrogen-bonds are shown by dashed lines.
2-Chloro-3-[(2-oxo-2H-chromen-6-yl)amino]naphthalene-1,4-dione top
Crystal data top
C19H10ClNO4F(000) = 720
Mr = 351.73Dx = 1.596 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5237 reflections
a = 10.9371 (5) Åθ = 2.0–29.5°
b = 10.4462 (5) ŵ = 0.29 mm1
c = 13.5104 (7) ÅT = 150 K
β = 108.533 (5)°Prism, violet
V = 1463.53 (12) Å30.23 × 0.13 × 0.07 mm
Z = 4
Data collection top
Oxford Xcalibur Gemini Ultra
diffractometer with Atlas detector
3527 independent reflections
Graphite monochromator2714 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1Rint = 0.055
ω scansθmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1414
Tmin = 0.947, Tmax = 1k = 1313
15281 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3527 reflectionsΔρmax = 0.23 e Å3
226 parametersΔρmin = 0.21 e Å3
2 restraintsAbsolute structure: Flack (1983), 1217 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (5)
Crystal data top
C19H10ClNO4V = 1463.53 (12) Å3
Mr = 351.73Z = 4
Monoclinic, CcMo Kα radiation
a = 10.9371 (5) ŵ = 0.29 mm1
b = 10.4462 (5) ÅT = 150 K
c = 13.5104 (7) Å0.23 × 0.13 × 0.07 mm
β = 108.533 (5)°
Data collection top
Oxford Xcalibur Gemini Ultra
diffractometer with Atlas detector
3527 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2714 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1Rint = 0.055
15281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.23 e Å3
S = 0.91Δρmin = 0.21 e Å3
3527 reflectionsAbsolute structure: Flack (1983), 1217 Friedel pairs
226 parametersAbsolute structure parameter: 0.07 (5)
2 restraints
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.31971 (5)0.30204 (5)0.61162 (4)0.02411 (12)
O40.57743 (16)0.02583 (15)0.22630 (13)0.0366 (4)
O30.39509 (13)0.03816 (14)0.24617 (11)0.0246 (4)
O10.11020 (14)0.09274 (14)0.55900 (12)0.0292 (4)
O20.31861 (14)0.29316 (15)0.82346 (11)0.0279 (4)
N10.07529 (16)0.14446 (17)0.48249 (13)0.0208 (4)
H10.00480.14310.44530.025*
C20.20172 (19)0.23128 (19)0.65296 (15)0.0182 (5)
C30.09915 (19)0.17092 (18)0.58553 (15)0.0179 (5)
C140.3192 (2)0.0628 (2)0.30908 (16)0.0197 (5)
C90.11248 (18)0.2050 (2)0.80240 (15)0.0182 (4)
C10.2201 (2)0.2472 (2)0.76414 (17)0.0187 (4)
C110.16331 (19)0.11893 (19)0.42803 (15)0.0183 (4)
C100.00065 (19)0.1522 (2)0.73331 (16)0.0192 (5)
C130.2008 (2)0.1182 (2)0.26179 (16)0.0214 (5)
H130.1730.13630.18910.026*
C40.0132 (2)0.13481 (18)0.62218 (16)0.0191 (5)
C120.1236 (2)0.14658 (19)0.32122 (16)0.0211 (5)
H120.0420.18560.28950.025*
C150.36188 (19)0.03463 (19)0.41469 (17)0.0195 (5)
C160.28168 (19)0.06194 (19)0.47438 (16)0.0202 (5)
H160.30850.04140.54660.024*
C190.5182 (2)0.0122 (2)0.28635 (19)0.0269 (5)
C180.5609 (2)0.0425 (2)0.39665 (18)0.0258 (5)
H180.64380.07950.42650.031*
C80.1236 (2)0.2211 (2)0.90669 (17)0.0240 (5)
H80.19930.2580.95360.029*
C50.1001 (2)0.1138 (2)0.76989 (17)0.0243 (5)
H50.17650.07750.72350.029*
C60.0869 (2)0.1289 (2)0.87452 (18)0.0265 (5)
H60.15430.10170.90.032*
C70.0230 (2)0.1829 (2)0.94223 (17)0.0264 (5)
H70.03010.19421.01360.032*
C170.4889 (2)0.0209 (2)0.45813 (18)0.0249 (5)
H170.52090.04190.53020.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0214 (2)0.0303 (3)0.0225 (2)0.0092 (3)0.0095 (2)0.0010 (3)
O40.0313 (10)0.0461 (11)0.0399 (10)0.0050 (8)0.0221 (8)0.0034 (8)
O30.0222 (8)0.0287 (9)0.0246 (9)0.0013 (7)0.0101 (7)0.0018 (6)
O10.0234 (9)0.0360 (10)0.0286 (9)0.0082 (7)0.0091 (7)0.0020 (7)
O20.0187 (8)0.0391 (10)0.0252 (8)0.0062 (7)0.0060 (7)0.0032 (7)
N10.0147 (9)0.0263 (10)0.0214 (10)0.0009 (7)0.0055 (8)0.0011 (7)
C20.0175 (11)0.0185 (12)0.0225 (12)0.0010 (8)0.0120 (9)0.0029 (8)
C30.0188 (11)0.0156 (11)0.0196 (11)0.0036 (9)0.0065 (9)0.0045 (8)
C140.0191 (11)0.0205 (11)0.0206 (11)0.0041 (9)0.0079 (9)0.0025 (9)
C90.0186 (11)0.0159 (10)0.0226 (11)0.0040 (9)0.0099 (9)0.0033 (9)
C10.0152 (10)0.0172 (11)0.0231 (11)0.0033 (8)0.0053 (9)0.0011 (8)
C110.0190 (10)0.0176 (11)0.0199 (11)0.0042 (9)0.0085 (9)0.0047 (9)
C100.0170 (11)0.0149 (11)0.0279 (12)0.0057 (8)0.0103 (9)0.0041 (9)
C130.0230 (11)0.0235 (12)0.0165 (11)0.0028 (9)0.0045 (9)0.0022 (9)
C40.0177 (11)0.0140 (11)0.0253 (12)0.0014 (9)0.0066 (10)0.0015 (9)
C120.0166 (10)0.0204 (12)0.0235 (12)0.0001 (9)0.0027 (9)0.0007 (9)
C150.0160 (11)0.0161 (11)0.0261 (12)0.0014 (8)0.0065 (9)0.0005 (8)
C160.0210 (11)0.0207 (12)0.0186 (11)0.0007 (9)0.0060 (9)0.0004 (8)
C190.0231 (12)0.0208 (12)0.0390 (14)0.0007 (10)0.0127 (11)0.0014 (10)
C180.0183 (12)0.0252 (13)0.0328 (13)0.0053 (9)0.0067 (10)0.0037 (10)
C80.0224 (12)0.0268 (13)0.0231 (12)0.0055 (9)0.0076 (10)0.0029 (9)
C50.0201 (11)0.0201 (12)0.0360 (14)0.0017 (9)0.0135 (10)0.0020 (10)
C60.0232 (12)0.0298 (14)0.0338 (14)0.0067 (10)0.0194 (11)0.0070 (10)
C70.0270 (12)0.0339 (15)0.0230 (12)0.0098 (11)0.0146 (10)0.0059 (10)
C170.0245 (13)0.0222 (12)0.0262 (12)0.0014 (10)0.0054 (11)0.0028 (10)
Geometric parameters (Å, º) top
Cl—C21.7268 (19)C10—C51.389 (3)
O4—C191.197 (2)C10—C41.475 (3)
O3—C191.385 (3)C13—C121.370 (3)
O3—C141.387 (2)C13—H130.95
O1—C41.213 (2)C12—H120.95
O2—C11.219 (3)C15—C161.397 (3)
N1—C31.361 (2)C15—C171.446 (3)
N1—C111.411 (2)C16—H160.95
N1—H10.86C19—C181.448 (3)
C2—C31.355 (3)C18—C171.333 (3)
C2—C11.460 (3)C18—H180.95
C3—C41.511 (3)C8—C71.391 (3)
C14—C131.376 (3)C8—H80.95
C14—C151.385 (3)C5—C61.384 (3)
C9—C81.386 (3)C5—H50.95
C9—C101.404 (3)C6—C71.379 (3)
C9—C11.494 (3)C6—H60.95
C11—C161.381 (3)C7—H70.95
C11—C121.399 (3)C17—H170.95
C19—O3—C14121.75 (17)C13—C12—C11120.85 (19)
C3—N1—C11129.15 (18)C13—C12—H12119.6
C3—N1—H1115.4C11—C12—H12119.6
C11—N1—H1115.4C14—C15—C16118.94 (18)
C3—C2—C1123.94 (18)C14—C15—C17117.96 (18)
C3—C2—Cl121.72 (15)C16—C15—C17123.1 (2)
C1—C2—Cl114.29 (15)C11—C16—C15119.77 (19)
C2—C3—N1129.12 (18)C11—C16—H16120.1
C2—C3—C4118.78 (17)C15—C16—H16120.1
N1—C3—C4111.90 (17)O4—C19—O3116.6 (2)
C13—C14—C15121.78 (18)O4—C19—C18127.2 (2)
C13—C14—O3116.84 (18)O3—C19—C18116.22 (18)
C15—C14—O3121.37 (18)C17—C18—C19122.9 (2)
C8—C9—C10119.83 (18)C17—C18—H18118.6
C8—C9—C1119.46 (18)C19—C18—H18118.6
C10—C9—C1120.69 (17)C9—C8—C7119.5 (2)
O2—C1—C2121.67 (19)C9—C8—H8120.2
O2—C1—C9121.19 (19)C7—C8—H8120.2
C2—C1—C9117.14 (18)C6—C5—C10119.4 (2)
C16—C11—C12119.73 (18)C6—C5—H5120.3
C16—C11—N1122.81 (18)C10—C5—H5120.3
C12—C11—N1117.36 (18)C7—C6—C5120.7 (2)
C5—C10—C9120.07 (19)C7—C6—H6119.7
C5—C10—C4119.79 (19)C5—C6—H6119.7
C9—C10—C4120.13 (18)C6—C7—C8120.4 (2)
C12—C13—C14118.92 (19)C6—C7—H7119.8
C12—C13—H13120.5C8—C7—H7119.8
C14—C13—H13120.5C18—C17—C15119.8 (2)
O1—C4—C10122.55 (18)C18—C17—H17120.1
O1—C4—C3118.71 (18)C15—C17—H17120.1
C10—C4—C3118.74 (18)
C1—C2—C3—N1176.13 (19)N1—C3—C4—O12.7 (3)
Cl—C2—C3—N16.5 (3)C2—C3—C4—C107.3 (3)
C1—C2—C3—C49.5 (3)N1—C3—C4—C10177.40 (17)
Cl—C2—C3—C4167.80 (14)C14—C13—C12—C110.6 (3)
C11—N1—C3—C230.9 (3)C16—C11—C12—C130.2 (3)
C11—N1—C3—C4154.41 (19)N1—C11—C12—C13176.49 (18)
C19—O3—C14—C13177.18 (19)C13—C14—C15—C160.7 (3)
C19—O3—C14—C151.9 (3)O3—C14—C15—C16179.77 (18)
C3—C2—C1—O2174.1 (2)C13—C14—C15—C17178.7 (2)
Cl—C2—C1—O28.4 (3)O3—C14—C15—C170.4 (3)
C3—C2—C1—C96.0 (3)C12—C11—C16—C151.2 (3)
Cl—C2—C1—C9171.51 (14)N1—C11—C16—C15177.35 (18)
C8—C9—C1—O21.6 (3)C14—C15—C16—C111.5 (3)
C10—C9—C1—O2179.98 (19)C17—C15—C16—C11177.8 (2)
C8—C9—C1—C2178.30 (18)C14—O3—C19—O4177.49 (19)
C10—C9—C1—C20.1 (3)C14—O3—C19—C182.5 (3)
C3—N1—C11—C1629.8 (3)O4—C19—C18—C17178.2 (2)
C3—N1—C11—C12154.0 (2)O3—C19—C18—C171.8 (3)
C8—C9—C10—C51.4 (3)C10—C9—C8—C71.0 (3)
C1—C9—C10—C5179.75 (18)C1—C9—C8—C7179.39 (19)
C8—C9—C10—C4179.97 (18)C9—C10—C5—C60.5 (3)
C1—C9—C10—C41.6 (3)C4—C10—C5—C6179.15 (19)
C15—C14—C13—C120.4 (3)C10—C5—C6—C70.8 (3)
O3—C14—C13—C12178.74 (18)C5—C6—C7—C81.2 (3)
C5—C10—C4—O13.3 (3)C9—C8—C7—C60.3 (3)
C9—C10—C4—O1178.1 (2)C19—C18—C17—C150.4 (3)
C5—C10—C4—C3176.81 (17)C14—C15—C17—C180.4 (3)
C9—C10—C4—C31.9 (3)C16—C15—C17—C18179.0 (2)
C2—C3—C4—O1172.59 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.213.015 (2)157
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.213.015 (2)156.7
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Brazilian agencies Proppi–UFF, FAPERJ, Scholarship Postgraduate Students Agreement Program – PEC-PG, CAPES/CNPq – Brazil and CAPES. The authors thank the X-ray diffraction laboratory LabCri-UFMG for the data collection, Professor Jackson A. L. C. Resende (IQ-UFF), and Professor M. D. Vargas (IQ-UFF) for her help and encouragement.

References

First citationAgilent (2011). CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIbis, C. & Deniz, N. G. (2012). J. Chem. Sci. 124, 657–667.  CrossRef CAS Google Scholar
First citationIshikawa, T., Kotake, K. & Ishii, H. (1995). Chem. Pharm. Bull. 43, 1039–1041.  CrossRef CAS PubMed Google Scholar
First citationIto, C., Ono, T., Tanaka, E., Takemura, Y., Nakata, T., Uchida, H., Ju-ichi, M., Omura, M. & Furukawa, H. (1993). Chem. Pharm. Bull. 41, 205–207.  CrossRef CAS Google Scholar
First citationPadwal, J., Lewis, W. & Moody, C. J. (2011). Org. Biomol. Chem. 9, 3484–3493.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationResende, J. A. L. C. & Gomez, J. A. (2012). Acta Cryst. E68, o2361.  CSD CrossRef IUCr Journals Google Scholar
First citationRózsa, Z., Mester, I., Reisch, R. & Szendrei, K. (1989). Planta Med. 55, 68–69.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds