Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Bis(2-diazoacetyl)piperazine

Åsmund Kaupang, Carl Henrik Görbitz* and Tore BongeHansen

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Received 13 May 2013; accepted 8 July 2013
Key indicators: single-crystal X-ray study; $T=105 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.090$; data-to-parameter ratio $=14.5$.

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$, contains one-half molecule, which is completed by a crystallographic center of symmetry. The piperazine ring adopts a chair conformation. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules into layers parallel to the $b c$ plane. The crystal packing also exhibits short $\mathrm{N} \cdots \mathrm{N}$ contacts of 3.0467 (16) \AA between the terminal diazo N atoms from neighbouring molecules.

Related literature

For related structures in the Cambridge Structural Database (Version 5.34 of November 2012; Allen, 2002), see: Kaupang (2010); Kaupang et al. (2010, 2011); Aliev et al. (1980); Fitzgerald \& Jensen (1978); Hope \& Black (1972). For normal bond lengths in organic compounds, see: Allen et al. (1987). For synthetic details, see: Kaupang \& Bonge-Hansen (2013); Kaupang (2010); Toma et al. (2007). For the synthesis of other diazoacetamides with a 1,4-diaza six-membered ring, see: Kaupang (2010); Mickelson et al. (1996). For the synthesis of other diazoacetamides, see: Ouihia et al. (1993). For the Chemical Abstracts Service, see: American Chemical Society (2008). For graph-set notation for hydrogen-bonding patterns, see: Etter et al. (1990).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2} \\
& M_{r}=222.22 \\
& \text { Monoclinic, } P 2_{\downarrow} / c \\
& a=4.0630(7) \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& b=9.0941(15) \AA \AA \\
& c=13.230(2) \AA \\
& \beta=94.453(2)^{\circ} \\
& V=487.38(14) \AA^{3}
\end{aligned}
$$

$Z=2$

$T=105 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.859, T_{\text {max }}=0.977$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.04$
1190 reflections
82 parameters
3 restraints
$1.4 \times 0.2 \times 0.2 \mathrm{~mm}$

4255 measured reflections 1190 independent reflections 1013 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.92(1)$	$2.39(1)$	$3.2219(15)$	$151(1)$
Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5412).

References

Aliev, Z. G., Kartsev, V. G., Atovmyan, L. O. \& Bogdanov, G. N. (1980). Khim. Farm. Zh. 14, 84-88.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-17.

American Chemical Society (2008). Chemical Abstracts Service, American Chemical Society, Columbus, OH, USA; accessed Apr 27, 2010.
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Fitzgerald, A. \& Jensen, L. H. (1978). Acta Cryst. B34, 828-836.
Hope, H. \& Black, K. T. (1972). Acta Cryst. B28, 3632-3634.
Kaupang, Å. (2010). MSc Thesis, University of Oslo, Norway, 230 pp., PDF available online at http://urn.nb.no/URN:NBN:no-26202 or through http:// www.duo.uio.no/.
Kaupang, Å. \& Bonge-Hansen, T. (2013). Beil. J. Org. Chem. Submitted.
Kaupang, Å., Görbitz, C. H. \& Hansen, T. (2010). Acta Cryst. E66, o1299.
Kaupang, Å., Görbitz, C. H. \& Hansen, T. (2011). Acta Cryst. E67, o1844o1845.
Mickelson, J. W., Jacobsen, E. J., Carter, D. B., Im, H. K., Im, W. B., Schreur, P. J. K. D., Sethy, V. H., Tang, A. H., McGee, J. E. \& Petke, J. D. (1996). J. Med. Chem. 39, 4654-4666.
Ouihia, A., Rene, L., Guilhem, J., Pascard, C. \& Badet, B. (1993). J. Org. Chem. 58, 1641-1642.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Toma, T., Shimokawa, J. \& Fukuyama, T. (2007). Org. Lett. 9, 3195-3197.

supporting information

Acta Cryst. (2013). E69, o1241 [doi:10.1107/S1600536813018801]

1,4-Bis(2-diazoacetyl)piperazine

Åsmund Kaupang, Carl Henrik Görbitz and Tore Bonge-Hansen

S1. Comment

The N, N^{\prime}-bis(2-diazoacetyl)piperazine (I) was prepared as part of a series of diazoacetamides (Kaupang et al., 2010; 2011) used in the intramolecular C - H insertion reactions taking place upon thermolysis of their corresponding α-bromodiazoacetamides (Kaupang, 2010). The title compound was synthesized from N, N^{\prime}-bis(2-bromoacetyl)piperazine following a procedure reported by Toma et al. (2007), modified to employ 1,1,3,3-tetramethylguanidine as the base instead of 1,8-diazabicyclo[5.4.0]undec-7-ene. No previous reports of this compound were found in the Chemical Abstracts Service (CAS; American Chemical Society, 2008).
In (I) (Fig. 1), the piperazine ring is in a normal chair conformation, with one half of the molecule constituting the asymmetric unit. In the Scheme the diazoacetyl group is illustrated in the normal way with $\mathrm{C}=\mathrm{N}^{+}$and $\mathrm{N}^{+}=\mathrm{N}^{-}$double bonds, but sometimes a $\mathrm{C}-\mathrm{N}$ single bond and a $\mathrm{N} \equiv \mathrm{N}$ triple bond is used. $\mathrm{N} 2-\mathrm{N} 3=1.1239(14) \AA$ is actually close in length to the triple bond in $\mathrm{N}_{2}(g)=1.0976 \AA$, but $\mathrm{N} 2-\mathrm{C} 2=1.3099(14) \AA$ is clearly shorter than a normal $\mathrm{N}=\mathrm{N}-\mathrm{C}\left(s p^{3}\right)$ single bond $=1.493 \AA$ (Allen et al., 1987), illustrating clearly the double bond nature.
As pointed out previously (Kaupang et al., 2010), the ring N atoms have an amide rather than amine character and display an almost planar configuration [sum of C—N1—C angles $358.86(15)^{\circ}$] due to the double bond character of N1 $-\mathrm{C} 1=1.3621$ (13) \AA. There are two interesting intermolecular interactions in the crystal packing (Fig. 2) - a C2$\mathrm{H} 21 \cdots \mathrm{O} 1$ contact (Table 1) giving rise to chains and rings, and a $3.047(14) \AA \mathrm{N} 3 \cdots \mathrm{~N} 3(1-x,-y,-z)$ contact between the diazo groups with an associated $\mathrm{N} 2-\mathrm{N} 3 \cdots \mathrm{~N} 3$ angle of $115.56(10)^{\circ}$ and $\mathrm{N} 2-\mathrm{N} 3 \cdots \mathrm{~N} 3-\mathrm{N} 2$ torsion angle 180.0°. The diazoacetyl moiety is a relatively rare functional group occurring in 20 different organic molecules in the Cambridge Structural Database (CSD, Version 5.34 of November 2012; Allen 2002), and only three (Aliev et al., 1980; Fitzgerald \& Jensen, 1978; Hope \& Black, 1972) participate in this type of interaction. Among more general compounds with a diazo group, 40 structures with $53 \mathrm{~N} \cdots \mathrm{~N}$ distance $<3.5 \AA$ were found in the CSD. Most contacts are within the 3.0 to $3.4 \AA$ range. $\mathrm{N}-\mathrm{N} \cdots \mathrm{N}$ angles have a wide distribution, but 45 are in the range $75-140^{\circ}$ with average value 107°. A trans orientation for the $\mathrm{N}-\mathrm{N} \cdots \mathrm{N}-\mathrm{N}$ torsion angle is preferred; 36 out of 53 contacts have values in the range $180 \pm 20^{\circ}$. Almost all structures with $\mathrm{N} \cdots \mathrm{N}$ contacts $<3.2 \AA$ fall into this group.

S2. Experimental

A solution of 4.0 mg of the title compound in $500 \mu L$ of MeCN was placed in a vial measuring $30 \times 6 \mathrm{~mm}$ and the open vial stored in the dark, exposed to air and at ambient temperature. Slow evaporation afforded yellow needles after 48 h . Crystals are rather fragile and easily fracture if cut with a scalpel. A rather long needle, $1.4 \times 0.2 \times 0.2 \mathrm{~mm}$, was thus used for data collection.

S3. Refinement

H atoms bonded to C 4 were positioned with idealized geometry and with fixed $\mathrm{C}-\mathrm{H}$ distances at $0.99 \AA$, while positional coordinates were refined for H atoms bonded to C 2 and C 3 , as too short intramolecular $\mathrm{H} \cdots \mathrm{H}$ distances resulted from putting these H atoms in theoretical positions. Distance restraints were imposed on the $\mathrm{C} 2-\mathrm{H} 21$ and $\mathrm{C} 3-$ H31/H32 bonds utilizing SHELX DFIX 0.950 .02 and DFIX 0.990 .02 commands, respectively.

Figure 1

The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (') $-x,-y, 1-z]$.

Figure 2

The unit cell and crystal packing of (I) viewed approximately along the a axis with the asymmetric unit covered by a grey ellipse. H atoms not involved in short intermolecular contacts (indicated by dotted lines) have been omitted for clarity. The molecules are connected by $\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 1 "(-\mathrm{x}, \mathrm{y}-1 / 2-\mathrm{y}, 1 / 2-\mathrm{z})$ hydrogen bonds into two-dimensional sheets with $C(4)$ chain and $R_{4}{ }^{4}(26)$ ring motifs (for graph set notation, see Etter et al., 1990). An intermolecular $\mathrm{N} 3 \cdots \mathrm{~N} 3^{\#}(1-\mathrm{x},-\mathrm{y},-\mathrm{z})$ contact has been highlighted in orange.

1,4-Bis(2-diazoacetyl)piperazine

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$
$M_{r}=222.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2ybc
$a=4.0630$ (7) \AA
$b=9.0941(15) \AA$
$c=13.230$ (2) \AA
$\beta=94.453$ (2) ${ }^{\circ}$
$V=487.38$ (14) \AA^{3}
$Z=2$

$$
\begin{aligned}
& F(000)=232 \\
& D_{\mathrm{x}}=1.514 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 382 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1727 \text { reflections } \\
& \theta=2.7-28.7^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=105 \mathrm{~K} \\
& \text { Needle, yellow } \\
& 1.4 \times 0.2 \times 0.2 \mathrm{~mm} \\
& \\
& \\
& T_{\min }=0.859, T_{\max }=0.977 \\
& 4255 \text { measured reflections } \\
& 1190 \text { independent reflections } \\
& 1013 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\text {max }}=28.7^{\circ}, \theta_{\min }=2.7^{\circ} \\
& h=-5 \rightarrow 5 \\
& k=-11 \rightarrow 11 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Data collection

Bruker APEXII CCD
 diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3 pixels mm^{-1}
Sets of exposures each taken over $0.5^{\circ} \omega$ rotation scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.04$
1190 reflections
82 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0478 P)^{2}+0.1317 P\right]$
> where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.1936(3)$	$0.09488(12)$	$0.31650(8)$	$0.0164(2)$
C2	$0.2433(3)$	$-0.01250(13)$	$0.23807(8)$	$0.0206(3)$
H21	$0.165(3)$	$-0.1064(14)$	$0.2306(11)$	0.025^{*}

C3	$-0.0658(3)$	$-0.10152(12)$	$0.41721(8)$	$0.0168(2)$
H31	$0.016(3)$	$-0.1708(14)$	$0.3686(10)$	0.020^{*}
H32	$-0.308(3)$	$-0.1005(15)$	$0.4067(10)$	0.020^{*}
C4	$-0.0370(3)$	$0.15403(11)$	$0.47597(8)$	$0.0169(2)$
H41	-0.2791	0.1688	0.4685	0.020^{*}
H42	0.0701	0.2495	0.4638	0.020^{*}
N1	$0.0575(2)$	$0.04673(10)$	$0.40139(7)$	$0.0165(2)$
N2	$0.4038(2)$	$0.03769(10)$	$0.16317(7)$	$0.0208(2)$
N3	$0.5432(3)$	$0.08327(13)$	$0.10006(8)$	$0.0295(3)$
O1	$0.2787(2)$	$0.22436(9)$	$0.30680(6)$	$0.0208(2)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0158(5)$	$0.0172(5)$	$0.0158(5)$	$0.0018(4)$	$-0.0009(4)$	$0.0016(4)$
C2	$0.0285(6)$	$0.0176(5)$	$0.0162(5)$	$-0.0020(4)$	$0.0047(4)$	$0.0010(4)$
C3	$0.0204(5)$	$0.0141(5)$	$0.0162(5)$	$-0.0021(4)$	$0.0026(4)$	$-0.0006(4)$
C4	$0.0202(5)$	$0.0142(5)$	$0.0167(5)$	$0.0009(4)$	$0.0030(4)$	$-0.0012(4)$
N1	$0.0221(4)$	$0.0131(4)$	$0.0145(4)$	$-0.0008(3)$	$0.0035(3)$	$-0.0006(3)$
N2	$0.0264(5)$	$0.0189(5)$	$0.0171(5)$	$0.0024(4)$	$0.0021(4)$	$-0.0006(4)$
N3	$0.0395(6)$	$0.0282(6)$	$0.0222(5)$	$-0.0010(5)$	$0.0110(5)$	$0.0007(4)$
O1	$0.0282(4)$	$0.0154(4)$	$0.0193(4)$	$-0.0016(3)$	$0.0047(3)$	$0.0017(3)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

C1-O1	1.2367 (14)	C3-H31	0.978 (12)
$\mathrm{C} 1-\mathrm{N} 1$	1.3621 (13)	C3-H32	0.985 (12)
$\mathrm{C} 1-\mathrm{C} 2$	1.4504 (16)	$\mathrm{C} 4-\mathrm{N} 1$	1.4602 (13)
C2-N2	1.3099 (14)	$\mathrm{C} 4-\mathrm{H} 41$	0.9900
$\mathrm{C} 2-\mathrm{H} 21$	0.915 (12)	C4-H42	0.9900
$\mathrm{C} 3-\mathrm{N} 1$	1.4589 (13)	N2-N3	1.1239 (14)
C3-C4 ${ }^{\text {i }}$	1.5193 (15)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	121.76 (10)	H31-C3-H32	107.6 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	120.75 (10)	N1-C4-C3 ${ }^{\text {i }}$	110.54 (9)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	117.48 (10)	N1-C4-H41	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	114.31 (10)	C3- ${ }^{\text {- } 4-\mathrm{H} 41}$	109.5
N2-C2-H21	115.7 (9)	N1-C4-H42	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	129.7 (9)	C3--C4-H42	109.5
N1-C3-C4	110.57 (9)	H41-C4-H42	108.1
N1-C3-H31	111.3 (8)	C1-N1-C3	125.53 (9)
C4i-C3-H31	109.1 (8)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	119.16 (9)
N1-C3-H32	108.8 (8)	C3-N1-C4	114.17 (8)
C4- ${ }^{\text {i }} 3-\mathrm{H} 32$	109.5 (8)	N3-N2-C2	178.58 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	4.86 (16)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	-171.95 (9)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-173.69 (9)	$\mathrm{C} 4{ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	137.76 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	176.58 (10)	C4- 4 - $3-\mathrm{N} 1-\mathrm{C} 4$	-54.61 (12)

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$-4.88(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$-136.92(9)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$9.51(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	$54.59(12)$

Symmetry code: (i) $-x,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 21 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.92(1)$	$2.39(1)$	$3.2219(15)$	$151(1)$

Symmetry code: (ii) $-x, y-1 / 2,-z+1 / 2$.

