Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Isotenulin

Kyle S. Knight,* Cole T. Smith and Thomas G. Waddell

Department of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

Correspondence e-mail: kyle-knight@utc.edu

Received 10 July 2013; accepted 16 July 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.043; *wR* factor = 0.100; data-to-parameter ratio = 13.9.

Isotenulin, $C_{17}H_{22}O_5$, is a sesquiterpene lactone isolated from sneezeweed Helenium amarum. It crystallizes with two independent molecules in the asymmetric unit. In each molecule, two five-membered rings (cyclopentenone and lactone) are trans-fused to the central seven-membered ring. The five-membered rings each adopt envelope conformations. The seven-membered ring adopts a twist-chair conformation. In the crystal, the molecules are linked by $C-H \cdots O$ interactions, which generate a three-dimensional network.

Related literature

For the discovery and structural identification of tenulin, see: Clark (1939); Herz et al. (1975); Braun et al. (1956); Barton et al. (1956). For biological activity that has been observed for tenulin and its analogs, see: Lee et al. (1977); Li et al. (2008); Hodge et al. (1995, and references therein). For the crystal structure of tenulin, see: Knight et al. (2013). For the crystal structure of bromoisotenulin, see: Mazhar-Ul-Haque et al. (1974).

Experimental

Crystal data

5611 reflections

$\begin{array}{l} C_{17}H_{22}O_5 \\ M_r = 306.34 \\ \text{Orthorhombic, } P_{2_12_12_1} \\ a = 6.4565 \ (11) \ \text{\AA} \\ b = 17.625 \ (3) \ \text{\AA} \\ c = 27.997 \ (4) \ \text{\AA} \end{array}$	$V = 3186.0 (9) \text{ Å}^{3}$ Z = 8 Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 200 K $0.55 \times 0.3 \times 0.2 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer	5611 independent reflections 4883 reflections with $I > 2\sigma(I)$
34729 measured reflections	$R_{\rm int} = 0.047$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.043$	405 parameters
$wR(F^2) = 0.100$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots O4^{i}$	1.00	2.50	3.324 (4)	139
$C21-H21\cdots O5^{ii}$	1.00	2.44	3.421 (4)	167
$\frac{C_{21} - \Pi_{21} \cdots O_{5}}{\text{Symmetry codes: (i) } x}$	$\frac{1.00}{-\frac{1}{2}, -y + \frac{1}{2}, -z}$	(ii) -x + 1, y -	$+\frac{1}{2}$ -z + $\frac{1}{2}$	107

 $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements are made to the National Science Foundation MRI Program (CHE-0951711) and the Grote Chemistry Fund at the University of Tennessee at Chattanooga for their generous support of our work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5424).

References

Barton, D. H. R. & De Mayo, P. (1956). J. Chem. Soc. pp. 142-149.

- Braun, B. H., Herz, W. & Rabindran, K. (1956). J. Am. Chem. Soc. 78, 4423-4429
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, E. P. (1939). J. Am. Chem. Soc. 61, 1836-1840.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Herz, W. & Sharma, R. P. (1975). J. Org. Chem. 40, 2557-2559.
- Hodge, J. S. & Waddell, T. G. (1995). J. Nat. Prod. 58, 149-151.
- Knight, K. S., Smith, C. T., Waddell, T. G. & Noll, B. (2013). Acta Cryst. E69, o1237-o1238.
- Lee, K. H., Hall, I. H., Mar, E. C., Starnes, C. O., ElGebaly, S. A., Waddell, T. G., Hadgraft, R. I., Ruffner, C. G. & Weidner, I. (1977). Science, 196, 533-536
- Li, X.-J. & Zhang, H.-Y. (2008). Trends Mol. Med. 14, 1-2.
- Mazhar-Ul-Haque, Rogers, D. & Caughlan, C. N. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 223-228.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1290 [doi:10.1107/S1600536813019703]

Isotenulin

Kyle S. Knight, Cole T. Smith and Thomas G. Waddell

S1. Comment

Isotenulin, $C_{17}H_{22}O_5$, is a sesquiterpene lactone isolated from sneezeweed *Helenium amarum*, a medicinal plant native to the southeastern USA. The crystal structure contains two independent tenulin molecules. These two conformations are distinguished by the way in which the five membered rings twist relative to each other, as measured by the magnitude of the dihedral angles at the cycloheptane-cyclopentenone and cycloheptane-lactone ring junctures. In the more twisted conformation, the dihedral angle of the substituents on the cycloheptane ring that form the cyclopentenone is 21.5 (1)°, while that of the lactone is 30.2 (1)°. Those values for the less twisted conformer are 18.1 (1)° and 28.2 (1)° respectively. The absolute configuration of all other stereocenters is that established for other sesquiterpene lactones (Mazhar-Ul-Haque *et al.*, 1974).

S2. Experimental

Isotenulin was prepared as described previously (Hodge et al., 1995).

S3. Refinement

H atoms were positioned geometrically at bond distances of 0.98, 0.99, 1.00 and 0.95 Å for methyl, methylene, methine and vinyl, respectively, and constrained to ride on their parent atoms with $U_{iso}(H)=1.2-1.5 U_{eq}(C)$.

Figure 1

Two independent molecules of isotenulin with the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

(I)

Crystal data $D_{\rm x} = 1.277 {\rm ~Mg} {\rm ~m}^{-3}$ C17H22O5 $M_r = 306.34$ Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9402 reflections Orthorhombic, $P2_12_12_1$ $\theta = 2.3 - 23.8^{\circ}$ a = 6.4565 (11) Å $\mu = 0.09 \text{ mm}^{-1}$ b = 17.625 (3) Å T = 200 Kc = 27.997 (4) Å V = 3186.0 (9) Å³ Block, colourless Z = 8 $0.55 \times 0.3 \times 0.2 \text{ mm}$ F(000) = 1312Data collection Bruker APEXII CCD 4883 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.047$ Graphite monochromator $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -7 \rightarrow 7$ φ and ω scans 34729 measured reflections $k = -21 \rightarrow 20$ $l = -31 \rightarrow 31$ 5611 independent reflections Refinement Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.043$ H-atom parameters constrained $wR(F^2) = 0.100$ $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 0.5452P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.015611 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$ 405 parameters $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6652 (3)	0.32092 (12)	0.13792 (7)	0.0282 (5)	
O4	0.4353 (4)	0.20905 (15)	-0.02363 (8)	0.0460 (6)	
02	0.4385 (4)	0.33063 (13)	-0.00295 (7)	0.0384 (6)	
05	0.4353 (5)	0.39087 (15)	0.23006 (8)	0.0521 (7)	
03	0.5852 (4)	0.21748 (14)	0.18164 (8)	0.0437 (6)	
O10	0.8514 (4)	0.91154 (14)	0.06402 (9)	0.0426 (6)	
09	0.0773 (4)	0.66834 (13)	0.21828 (9)	0.0470 (6)	
08	0.8155 (5)	0.72399 (18)	0.09136 (11)	0.0705 (9)	
06	0.5119 (3)	0.78613 (12)	0.08363 (7)	0.0322 (5)	
07	0.0566 (3)	0.78753 (12)	0.19284 (8)	0.0342 (5)	
C17	0.1123 (6)	0.5589 (2)	0.05783 (14)	0.0489 (10)	
H17A	0.1440	0.5799	0.0263	0.073*	

H17B	0.1065	0.6000	0.0813	0.073*
H17C	-0.0218	0.5329	0.0567	0.073*
C14	0.2811 (5)	0.50237 (18)	0.07211 (11)	0.0333 (8)
H14	0.4150	0.5305	0.0750	0.040*
C13	0.2347 (5)	0.46402 (17)	0.12044 (10)	0.0267 (7)
H13	0.1279	0.4241	0.1142	0.032*
C9	0.4208 (5)	0.42363 (16)	0.14536 (10)	0.0256(7)
C3	0.4490 (5)	0.33964 (16)	0.13131 (10)	0.0241 (6)
H3	0.3655	0.3079	0.1538	0.029*
C2	0.7118 (5)	0.26042 (19)	0.16595 (12)	0.0331 (7)
C8	0.9396 (6)	0.2557(2)	0 17373 (14)	0.0541(10)
H8A	0.9851	0.2990	0.1930	0.081*
H8B	1 0108	0.2566	0.1428	0.081*
H8C	0.9728	0.2084	0.1905	0.081*
C6	0.9720 0.4421(5)	0.2565(2)	0.00761(12)	0.0355 (8)
C5	0.1121(5) 0.4467(5)	0.2565(2) 0.37680(18)	0.00701(12) 0.04092(10)	0.0316(7)
Н5	0.5910	0.3951	0.0468	0.0316(7)
C15	0.3031(5)	0.3731 0.44332(10)	0.03186 (11)	0.0355 (8)
H15A	0.3031 (3)	0.44332 (19)	0.0247	0.0333 (8)
	0.1050	0.4229	0.0247	0.043
C12	0.3320	0.4700 0.51252 (18)	0.0028	0.043°
U12	0.1511(5)	0.51352 (18)	0.1540	0.0329(7)
П12 С11	0.0391	0.3347 0.40280 (10)	0.1349	0.040°
	0.2185 (5)	0.49380 (19)	0.20298 (12)	0.0303 (8)
HII	0.1/81	0.5170	0.2322	0.044*
C10	0.3644 (5)	0.43101 (18)	0.19861 (11)	0.0327(7)
C4	0.3809 (4)	0.32060 (16)	0.08008 (10)	0.0253 (6)
H4	0.2260	0.3190	0.0800	0.030*
CI	0.4563 (5)	0.24438 (18)	0.06090 (11)	0.0324 (7)
H1	0.6058	0.2388	0.0695	0.039*
C7	0.3428 (6)	0.17418 (18)	0.07783 (12)	0.0435 (9)
H7A	0.1950	0.1791	0.0706	0.065*
H7B	0.3613	0.1685	0.1124	0.065*
H7C	0.3987	0.1295	0.0615	0.065*
C16	0.6230 (5)	0.46954 (18)	0.14028 (13)	0.0364 (8)
H16A	0.5950	0.5232	0.1468	0.055*
H16B	0.6765	0.4641	0.1077	0.055*
H16C	0.7258	0.4505	0.1631	0.055*
C27	0.7412 (5)	0.94561 (18)	0.09205 (11)	0.0300 (7)
C26	0.5369 (4)	0.91551 (16)	0.11260 (10)	0.0241 (6)
C20	0.5510 (5)	0.83112 (16)	0.12654 (9)	0.0247 (6)
H20	0.6953	0.8205	0.1377	0.030*
C21	0.4003 (4)	0.80785 (16)	0.16622 (10)	0.0245 (6)
H21	0.4636	0.8252	0.1969	0.029*
C18	0.3614 (5)	0.72245 (17)	0.17173 (11)	0.0306 (7)
H18	0.3445	0.6999	0.1392	0.037*
C23	0.1542 (5)	0.72034 (18)	0.19676 (12)	0.0344 (8)
C19	0.6589 (6)	0.7361 (2)	0.06999 (13)	0.0448 (9)
C33	0.3809 (5)	0.93110 (19)	0.07173 (10)	0.0317 (7)
		• •	. ,	

H33A	0.3752	0.9857	0.0653	0.048*
H33B	0.2432	0.9131	0.0812	0.048*
H33C	0.4255	0.9043	0.0428	0.048*
C28	0.7730 (5)	1.02207 (18)	0.11142 (12)	0.0351 (8)
H28	0.8739	1.0573	0.1005	0.042*
C29	0.6391 (5)	1.03451 (17)	0.14657 (12)	0.0329 (7)
H29	0.6320	1.0810	0.1636	0.039*
C30	0.4996 (4)	0.96816 (16)	0.15690 (10)	0.0256 (7)
H30	0.5592	0.9414	0.1852	0.031*
C31	0.2724 (5)	0.98620 (17)	0.16899 (11)	0.0290 (7)
H31	0.2009	1.0018	0.1389	0.035*
C32	0.1562 (5)	0.91723 (17)	0.18982 (11)	0.0294 (7)
H32A	0.2012	0.9109	0.2234	0.035*
H32B	0.0067	0.9297	0.1904	0.035*
C22	0.1807 (5)	0.84120 (17)	0.16491 (11)	0.0277 (7)
H22	0.1287	0.8441	0.1313	0.033*
C24	0.5304 (6)	0.67908 (19)	0.19779 (13)	0.0439 (9)
H24A	0.5580	0.7034	0.2286	0.066*
H24B	0.6571	0.6792	0.1785	0.066*
H24C	0.4853	0.6267	0.2031	0.066*
C34	0.2531 (6)	1.05118 (18)	0.20498 (13)	0.0431 (9)
H34A	0.3292	1.0382	0.2341	0.065*
H34B	0.1067	1.0593	0.2127	0.065*
H34C	0.3110	1.0976	0.1911	0.065*
C25	0.5960 (8)	0.6984 (2)	0.02392 (14)	0.0628 (12)
H25A	0.6992	0.6600	0.0153	0.094*
H25B	0.5874	0.7365	-0.0015	0.094*
H25C	0.4606	0.6741	0.0280	0.094*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0238 (10)	0.0339 (11)	0.0271 (11)	0.0024 (9)	0.0006 (9)	0.0045 (10)
O4	0.0406 (14)	0.0598 (16)	0.0378 (13)	0.0078 (13)	0.0003 (12)	-0.0218 (12)
O2	0.0446 (14)	0.0484 (15)	0.0224 (11)	0.0033 (12)	0.0045 (10)	-0.0046 (10)
O5	0.0764 (19)	0.0547 (15)	0.0253 (12)	0.0087 (15)	-0.0102 (13)	-0.0023 (12)
03	0.0402 (14)	0.0408 (13)	0.0500 (15)	-0.0044 (12)	-0.0046 (12)	0.0171 (11)
O10	0.0275 (12)	0.0566 (16)	0.0438 (14)	0.0042 (11)	0.0089 (11)	0.0024 (12)
09	0.0493 (15)	0.0327 (13)	0.0590 (15)	-0.0097 (12)	0.0163 (13)	0.0010 (12)
08	0.063 (2)	0.086 (2)	0.0628 (19)	0.0438 (17)	-0.0031 (16)	-0.0259 (17)
O6	0.0304 (12)	0.0382 (12)	0.0280 (11)	0.0024 (9)	0.0029 (9)	-0.0120 (10)
O7	0.0278 (11)	0.0319 (12)	0.0429 (13)	-0.0028 (10)	0.0088 (10)	-0.0016 (10)
C17	0.059 (2)	0.044 (2)	0.044 (2)	0.0129 (19)	-0.0084 (19)	0.0053 (17)
C14	0.0392 (18)	0.0320 (16)	0.0285 (18)	-0.0013 (14)	-0.0037 (14)	0.0026 (14)
C13	0.0236 (15)	0.0277 (16)	0.0288 (17)	-0.0016 (13)	-0.0004 (13)	-0.0022 (13)
C9	0.0238 (15)	0.0302 (15)	0.0228 (15)	-0.0024 (13)	-0.0026 (13)	-0.0015 (13)
C3	0.0186 (14)	0.0303 (16)	0.0234 (15)	-0.0026 (12)	0.0013 (12)	0.0022 (12)
C2	0.0357 (18)	0.0369 (18)	0.0267 (16)	0.0038 (15)	0.0011 (15)	0.0015 (15)

C ^o	0.025(2)	0.070(2)	0.057(2)	0.016(2)	_0.0001 (18)	0.010(2)
	0.033(2)	0.070(3)	0.037(2)	0.010(2)	-0.0001(18)	0.019(2)
C6	0.0241 (16)	0.048 (2)	0.0341 (18)	0.0061 (16)	0.0003 (14)	-0.0122 (17)
C5	0.0324 (16)	0.0404 (18)	0.0220 (15)	-0.0027 (15)	0.0017 (14)	-0.0022 (14)
C15	0.042 (2)	0.0411 (19)	0.0234 (17)	-0.0022 (16)	-0.0004 (14)	0.0082 (14)
C12	0.0257 (15)	0.0316 (16)	0.042 (2)	-0.0012 (14)	0.0022 (15)	-0.0049 (15)
C11	0.0374 (19)	0.0398 (19)	0.0318 (19)	-0.0045 (16)	0.0051 (15)	-0.0116 (15)
C10	0.0355 (18)	0.0369 (18)	0.0256 (17)	-0.0076 (15)	-0.0063 (15)	-0.0037 (15)
C4	0.0198 (14)	0.0303 (16)	0.0259 (15)	-0.0009 (12)	0.0001 (12)	-0.0010 (13)
C1	0.0292 (16)	0.0366 (17)	0.0314 (16)	0.0091 (15)	-0.0046 (14)	-0.0071 (14)
C7	0.058 (2)	0.0315 (18)	0.041 (2)	0.0013 (17)	-0.0110 (18)	-0.0045 (16)
C16	0.0296 (17)	0.0351 (17)	0.044 (2)	-0.0045 (15)	-0.0028 (16)	-0.0010 (16)
C27	0.0206 (15)	0.0419 (18)	0.0275 (17)	0.0050 (14)	-0.0042 (14)	0.0056 (15)
C26	0.0170 (14)	0.0342 (17)	0.0210 (15)	0.0031 (13)	-0.0050 (12)	-0.0019 (13)
C20	0.0189 (14)	0.0304 (16)	0.0247 (15)	0.0025 (13)	-0.0031 (12)	-0.0071 (13)
C21	0.0256 (15)	0.0258 (14)	0.0221 (15)	-0.0002 (12)	-0.0017 (13)	-0.0049 (12)
C18	0.0335 (17)	0.0277 (15)	0.0306 (17)	-0.0016 (14)	0.0029 (14)	-0.0059 (14)
C23	0.0380 (18)	0.0299 (17)	0.0353 (18)	-0.0071 (16)	0.0027 (16)	-0.0099 (15)
C19	0.050(2)	0.043 (2)	0.041 (2)	0.0078 (18)	0.0134 (19)	-0.0092 (17)
C33	0.0275 (16)	0.0452 (19)	0.0224 (17)	0.0022 (14)	-0.0025 (13)	-0.0002 (14)
C28	0.0246 (16)	0.0370 (18)	0.0436 (19)	-0.0042 (14)	-0.0036 (15)	0.0138 (16)
C29	0.0300 (16)	0.0282 (16)	0.0405 (19)	0.0006 (14)	-0.0107 (15)	0.0021 (14)
C30	0.0282 (16)	0.0245 (15)	0.0241 (16)	0.0030 (12)	-0.0053 (12)	0.0001 (12)
C31	0.0299 (16)	0.0312 (16)	0.0259 (16)	0.0050 (13)	0.0015 (14)	0.0007 (14)
C32	0.0253 (15)	0.0330 (16)	0.0299 (17)	0.0064 (13)	0.0041 (14)	-0.0017 (13)
C22	0.0256 (16)	0.0320 (16)	0.0256 (15)	-0.0030 (13)	0.0027 (13)	0.0008 (13)
C24	0.041 (2)	0.0335 (18)	0.057 (2)	0.0031 (17)	0.0045 (18)	0.0076 (18)
C34	0.057 (2)	0.0284 (17)	0.044 (2)	0.0022 (17)	0.0137 (18)	-0.0048 (16)
C25	0.076 (3)	0.062 (3)	0.051 (2)	0.003 (2)	0.015 (2)	-0.030 (2)

Geometric parameters (Å, °)

01—C3	1.446 (3)	C1—C7	1.514 (5)	
O1—C2	1.358 (4)	С7—Н7А	0.9800	
O4—C6	1.211 (4)	С7—Н7В	0.9800	
O2—C6	1.340 (4)	С7—Н7С	0.9800	
O2—C5	1.474 (4)	C16—H16A	0.9800	
O5—C10	1.219 (4)	C16—H16B	0.9800	
O3—C2	1.198 (4)	C16—H16C	0.9800	
O10—C27	1.218 (4)	C27—C26	1.533 (4)	
O9—C23	1.204 (4)	C27—C28	1.467 (5)	
O8—C19	1.194 (5)	C26—C20	1.540 (4)	
O6—C20	1.462 (3)	C26—C33	1.549 (4)	
O6—C19	1.350 (4)	C26—C30	1.568 (4)	
O7—C23	1.346 (4)	C20—H20	1.0000	
O7—C22	1.466 (4)	C20—C21	1.533 (4)	
C17—H17A	0.9800	C21—H21	1.0000	
C17—H17B	0.9800	C21—C18	1.534 (4)	
C17—H17C	0.9800	C21—C22	1.535 (4)	

C17—C14	1.530 (5)	C18—H18	1.0000
C14—H14	1.0000	C18—C23	1.511 (5)
C14—C13	1.542 (4)	C18—C24	1.519 (5)
C14—C15	1.540 (5)	C19—C25	1.507 (5)
С13—Н13	1.0000	С33—Н33А	0.9800
C13—C9	1.561 (4)	C33—H33B	0.9800
C13—C12	1.514 (4)	C33—H33C	0.9800
C9—C3	1 542 (4)	C28—H28	0.9500
C9—C10	1.540(4)	C_{28} C_{29} C_{29}	1 328 (5)
C9-C16	1.542(4)	C29—H29	0.9500
C3—H3	1.0000	C_{29} C_{30}	1.504(4)
$C_3 - C_4$	1.537(4)	C30—H30	1.0000
$C_2 = C_8$	1.357 (4)	C_{30} C_{31}	1.539 (4)
C8_H8A	0.9800	C31_H31	1.0000
C8 H8B	0.9800	C_{31} C_{32}	1.0000
	0.9800	$C_{31} - C_{32}$	1.545(4) 1 530(4)
	1,510 (5)	C_{32} H_{32A}	0.0000
C5 H5	1.0000	C32 H32R	0.9900
C_{5} C_{15}	1.0000	C_{32} C_{32} C_{32}	0.9900
$C_{5} = C_{15}$	1.510(5) 1.527(4)	C32—C22	1.0000
C_{15} H_{15A}	1.337 (4)	C_{22} H_{24}	0.0800
C15—H15A	0.9900	C_{24} H24R	0.9800
C12 H12	0.9900	C_{24} H24C	0.9800
	0.9300	C_{24} H24C	0.9800
	1.321 (5)	C34—H34A	0.9800
CII—HII	0.9500	C34—H34B	0.9800
	1.459 (5)	C34—H34C	0.9800
C4—H4	1.0000	C25—H25A	0.9800
	1.526 (4)	C25—H25B	0.9800
CI—HI	1.0000	C25—H25C	0.9800
C2—O1—C3	117.8 (2)	H16A—C16—H16C	109.5
C6—O2—C5	110.7 (2)	H16B—C16—H16C	109.5
C19—O6—C20	117.7 (3)	O10—C27—C26	125.0 (3)
C23—O7—C22	110.8 (2)	O10-C27-C28	127.6 (3)
H17A—C17—H17B	109.5	C28—C27—C26	107.4 (3)
H17A—C17—H17C	109.5	C27—C26—C20	112.2 (2)
H17B—C17—H17C	109.5	C27—C26—C33	102.8 (2)
C14—C17—H17A	109.5	C27—C26—C30	103.0 (2)
C14—C17—H17B	109.5	C20—C26—C33	113.4 (2)
С14—С17—Н17С	109.5	C20—C26—C30	112.3 (2)
C17—C14—H14	108.3	C33—C26—C30	112.3 (2)
C17—C14—C13	112.1 (3)	O6—C20—C26	107.8 (2)
C17—C14—C15	108.3 (3)	O6—C20—H20	108.4
C13—C14—H14	108.3	O6—C20—C21	109.9 (2)
C15—C14—H14	108.3	C26—C20—H20	108.4
C15—C14—C13	111.3 (3)	C21—C20—C26	113.9 (2)
C14—C13—H13	106.8	C21—C20—H20	108.4
C14—C13—C9	116.3 (3)	C20—C21—H21	106.3

С9—С13—Н13	106.8	C20—C21—C18	116.1 (2)
C12—C13—C14	117.5 (3)	C20—C21—C22	117.8 (2)
C12—C13—H13	106.8	C18—C21—H21	106.3
C12—C13—C9	102.0 (2)	C18—C21—C22	103.1 (2)
C3—C9—C13	114.5 (2)	C22—C21—H21	106.3
C10—C9—C13	102.3 (2)	C21—C18—H18	108.4
С10—С9—С3	110.8 (2)	C23—C18—C21	102.5 (2)
C10—C9—C16	104.2 (2)	C23—C18—H18	108.4
C16—C9—C13	111.8 (2)	C23—C18—C24	113.6 (3)
C16—C9—C3	112.3 (2)	C24—C18—C21	115.1 (3)
01	107.5 (2)	C24—C18—H18	108.4
01—C3—H3	108.2	$09-C^{2}-07$	121.2 (3)
01 - C3 - C4	110.2 (2)	$09-C^{2}-C^{1}8$	128.0(3)
C9—C3—H3	108.2	07-C23-C18	110.8(3)
C4-C3-C9	114 4 (2)	08-C19-06	124.8(3)
C4—C3—H3	108.2	08-C19-C25	1253(3)
01-02-08	110 3 (3)	06-C19-C25	109.9(4)
03-02-01	123 8 (3)	C26—C33—H33A	109.5
03-02-01	125.8 (3)	C26 C33 H33R	109.5
$C_2 = C_8 = H_8 \Delta$	109.5	C26 C33 H33D	109.5
$C_2 = C_3 = H_{8B}$	109.5	H33A_C33_H33B	109.5
$C_2 = C_3 = H_8C$	109.5	H33A_C33_H33C	109.5
H8A - C8 - H8B	109.5	H33B_C33_H33C	109.5
H8A - C8 - H8C	109.5	C27_C28_H28	105.5
	109.5	$C_{20} = C_{20} = H_{20}$	129.2 109.5 (3)
04-C6-02	120.9 (3)	$C_{29} = C_{28} = C_{27}$	109.5 (5)
04 - C6 - C1	120.9(3) 128.2(3)	$C_{29} = C_{20} = H_{20}$	123.2
0^{-}_{-}	120.2(3) 110.9(3)	$C_{28} = C_{29} = C_{30}$	123.1 113 8 (3)
02 - 00 - 01 02 - 05 - H5	110.9 (5)	$C_{20} = C_{20} = C_{30}$	123.1
02 - 05 - 015	10.4	$C_{20} = C_{20} = H_{20}$	125.1
02 - 05 - 013	103.4(2) 103.2(2)	$C_{20} = C_{30} = C_{26}$	100.8
02 - 03 - 04	103.2 (2)	$C_{29} = C_{30} = C_{20}$	102.5 (2)
$C_{15} = C_{5} = C_{4}$	110.4	$C_{29} = C_{30} = H_{30}$	100.8
C_{13} C_{5} U_{5}	110.7 (5)	$C_{29} = C_{30} = C_{31}$	110.9(2)
$C_{4} - C_{5} - H_{5}$	110.4	$C_{21} = C_{20} = C_{20}$	110.5 (2)
С14—С15—НІЗА	108.0	C_{20} C_{21} H_{21}	100.8
C14—C15—H15B	108.0	$C_{30} = C_{31} = H_{31}$	108.1
$C_5 = C_{15} = U_{15}$	117.2 (5)	$C_{30} = C_{31} = C_{32}$	112.0 (2)
C5—C15—H15A	108.0	$C_{32} = C_{31} = H_{31}$	108.1
	108.0	$C_{34} = C_{31} = C_{30}$	112.1 (3)
HISA—CIS—HISB	107.2	C34—C31—H31	108.1
CI3—CI2—HI2	123.3	$C_{34} - C_{31} - C_{32}$	107.5 (3)
CII = CI2 = CI3	113.4 (3)	C31—C32—H32A	107.8
C11—C12—H12	123.3	C31—C32—H32B	107.8
C12—C11—H11	125.2	H32A—C32—H32B	107.1
C12—C11—C10	109.7 (3)	$C_{22} - C_{32} - C_{31}$	118.1 (2)
C10—C11—H11	125.2	C22—C32—H32A	107.8
05-010-09	124.2 (3)	C22—C32—H32B	107.8
O5-C10-C11	128.5 (3)	O7—C22—C21	104.2 (2)

C11—C10—C9	107.3 (3)	O7—C22—C32	105.5 (2)
C3—C4—C5	116.5 (2)	O7—C22—H22	110.6
C3—C4—H4	107.1	C21—C22—H22	110.6
C5—C4—H4	107.1	C32—C22—C21	115.0 (3)
C1—C4—C3	115.4 (2)	C32—C22—H22	110.6
C1—C4—C5	103.2 (2)	C18—C24—H24A	109.5
C1—C4—H4	107.1	C18—C24—H24B	109.5
C6-C1-C4	101.8 (2)	C18—C24—H24C	109.5
C6-C1-H1	108.1	H24A—C24—H24B	109.5
C6-C1-C7	113.3 (3)	H24A - C24 - H24C	109.5
C4—C1—H1	108.1	H24B— $C24$ — $H24C$	109.5
C7-C1-C4	117.0(3)	C31-C34-H34A	109.5
C7	108.1	C31 - C34 - H34B	109.5
C1 - C7 - H7A	109.5	$C_{31} - C_{34} - H_{34}C_{34}$	109.5
C1-C7-H7B	109.5	H34A—C34—H34B	109.5
C1 - C7 - H7C	109.5	H34A - C34 - H34C	109.5
H7A - C7 - H7B	109.5	$H_34B - C_34 - H_34C$	109.5
H7A - C7 - H7C	109.5	C19 $C25$ $H25A$	109.5
H7B-C7-H7C	109.5	C19 - C25 - H25R	109.5
C9-C16-H16A	109.5	C19 - C25 - H25C	109.5
C_{P} C_{16} H_{16B}	109.5	H254_C25_H25B	109.5
C_{0} C_{16} H_{16}	109.5	H25A = C25 = H25C	109.5
H_{164} $-C_{16}$ $-H_{16B}$	109.5	H25B-C25-H25C	109.5
	109.5	11250 025 11250	109.5
01 - C3 - C4 - C5	-775(3)	C10-C9-C3-C4	146 2 (3)
01 - C3 - C4 - C1	43 8 (3)	C4-C5-C15-C14	665(4)
04-C6-C1-C4	-1603(3)	C16-C9-C3-O1	250(3)
04-C6-C1-C7	-337(5)	$C_{16} - C_{9} - C_{3} - C_{4}$	-97.7(3)
$0^{2}-C6-C1-C4$	201(3)	C16-C9-C10-O5	-840(4)
02 - C6 - C1 - C7	1466(3)	C16-C9-C10-C11	95 2 (3)
02 - C5 - C15 - C14	-1797(3)	C_{27} C_{26} C_{20} C_{20} C_{20}	-843(3)
02 - C5 - C4 - C3	179.7(3) 157.7(2)	C_{27} C_{26} C_{20} C_{21}	1535(2)
02 - C5 - C4 - C1	302(3)	$C_{27} = C_{20} = C_{20} = C_{21}$	133.3(2) 181(3)
010-027-026-020	41.9(4)	$C_{27} = C_{20} = C_{30} = C_{31}$	146.9(3)
010 - C27 - C26 - C33	-803(3)	$C_{27} = C_{28} = C_{29} = C_{30}$	140.9(3)
010 - C27 - C26 - C30	162.9(3)	$C_{26} = C_{27} = C_{28} = C_{29}$	116(3)
010 - C27 - C28 - C29	-1699(3)	$C_{26} = C_{20} = C_{21} = C_{18}$	163.0(2)
06-020-021-018	420(3)	$C_{20} = C_{20} = C_{21} = C_{10}$	40.0(3)
06-C20-C21-C22	-810(3)	$C_{20} = C_{20} = C_{21} = C_{22}$	71.5(3)
C17 - C14 - C13 - C9	-163.2(3)	$C_{20} = C_{30} = C_{31} = C_{32}$	-1671(3)
$C_{17} = C_{14} = C_{13} = C_{13}$	-42.0(4)	$C_{20} = C_{50} = C_{51} = C_{54}$	28(5)
C17 - C14 - C15 - C12	-1737(3)	$C_{20} = 00 = C_{19} = 0.08$	-177.0(3)
$C_{1}^{-1} - C_{1}^{-1} - C_{1}^{-1} - C_{2}^{-1}$	-80.3(3)	$C_{20} = C_{10} = C_{10} = C_{20}$	177.0(3)
C_{14} C_{13} C_{9} C_{10}	150 7 (3)	C_{20} C_{20} C_{30} C_{21} C_{20} C_{20} C_{21}	-022(3)
$C_{14} = C_{13} = C_{24} = C_{10}$	30.8(A)	C_{20} C_{20} C_{30} C_{31} C_{31} C_{31} C_{32}	-1575(3)
$C_{14} = C_{13} = C_{7} = C_{10}$	-1446(2)	C_{20} C_{21} C_{10} C_{23} C_{20} C_{21} C_{18} C_{24}	137.3(2)
$C_{14} = C_{15} = C_{12} = C_{11}$	-500(3)	C_{20} C_{21} C_{10} C_{24} C_{20} C_{21} C_{22} C_{7}	1575(3)
$C_{13} = C_{14} = C_{13} = C_{3}$	153 0 (2)	C_{20} C_{21} C_{22} C_{21} C_{22} C_{22}	-875(2)
	/ / -		

C13—C9—C3—C4	31.1 (3)	C21—C18—C23—O9	-162.1 (3)
C13—C9—C10—O5	159.5 (3)	C21—C18—C23—O7	17.2 (3)
C13—C9—C10—C11	-21.3 (3)	C18—C21—C22—O7	28.2 (3)
C13—C12—C11—C10	2.7 (4)	C18—C21—C22—C32	143.2 (3)
C9—C13—C12—C11	-16.2 (3)	C23—O7—C22—C21	-18.7 (3)
C9—C3—C4—C5	43.8 (3)	C23—O7—C22—C32	-140.3 (3)
C9—C3—C4—C1	165.0 (3)	C19—O6—C20—C26	122.9 (3)
C3—O1—C2—O3	7.6 (4)	C19—O6—C20—C21	-112.5 (3)
C3—O1—C2—C8	-172.7 (3)	C33—C26—C20—O6	31.6 (3)
C3—C9—C10—O5	37.0 (4)	C33—C26—C20—C21	-90.6 (3)
C3—C9—C10—C11	-143.8 (3)	C33—C26—C30—C29	-91.7 (3)
C3—C4—C1—C6	-158.2 (3)	C33—C26—C30—C31	37.0 (4)
C3—C4—C1—C7	77.8 (4)	C28—C27—C26—C20	-139.5 (2)
C2—O1—C3—C9	125.7 (3)	C28—C27—C26—C33	98.3 (3)
C2-O1-C3-C4	-109.0 (3)	C28—C27—C26—C30	-18.5 (3)
C6—O2—C5—C15	-141.7 (3)	C28—C29—C30—C26	-12.8 (3)
C6—O2—C5—C4	-18.8 (3)	C28—C29—C30—C31	-141.1 (3)
C5—O2—C6—O4	179.6 (3)	C29—C30—C31—C32	-167.1 (3)
C5—O2—C6—C1	-0.8 (4)	C29—C30—C31—C34	-45.7 (4)
C5—C4—C1—C6	-30.0 (3)	C30—C26—C20—O6	160.3 (2)
C5—C4—C1—C7	-154.1 (3)	C30-C26-C20-C21	38.0 (3)
C15—C14—C13—C9	75.2 (3)	C30—C31—C32—C22	-46.3 (4)
C15—C14—C13—C12	-163.5 (3)	C31—C32—C22—O7	179.2 (3)
C15—C5—C4—C3	-87.3 (3)	C31—C32—C22—C21	65.0 (4)
C15—C5—C4—C1	145.2 (3)	C22—O7—C23—O9	-179.7 (3)
C12—C13—C9—C3	141.5 (3)	C22—O7—C23—C18	0.9 (3)
C12—C13—C9—C10	21.5 (3)	C22—C21—C18—C23	-27.1 (3)
C12—C13—C9—C16	-89.4 (3)	C22—C21—C18—C24	-151.0 (3)
C12—C11—C10—O5	-168.5 (4)	C24—C18—C23—O9	-37.3 (5)
C12—C11—C10—C9	12.4 (4)	C24—C18—C23—O7	142.1 (3)
C10-C9-C3-O1	-91.1 (3)	C34—C31—C32—C22	-170.3 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4···O4 ⁱ	1.00	2.50	3.324 (4)	139
C21—H21····O5 ⁱⁱ	1.00	2.44	3.421 (4)	167

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) -x+1, y+1/2, -z+1/2.