

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pentazirconium copper tribismuth

Agnieszka Balinska,^a Ivan Tarasiuk^b* and Volodymyr Pavlyuk^{b,a}

^aInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland, and ^bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005, Lviv, Ukraine Correspondence e-mail: tarasiuk.i@gmail.com

Received 3 July 2013; accepted 11 July 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Zr–Cu) = 0.001 Å; R factor = 0.023; wR factor = 0.041; data-to-parameter ratio = 14.8.

Pentazirconium copper tribismuth, Zr_5CuBi_3 , crystallizes in the hexagonal Hf₅CuSn₃ structure type. The asymmetric unit contains two Zr sites (site symmetries 3.2 and *m*2*m*), one Cu site (site symmetry 3.*m*) and one Bi site (site symmetry *m*2*m*). The environment of the Bi atoms is a tetragonal antiprism with one added atom and a coordination number (CN) of 9. The polyhedron around the Zr1 atom is a defective cubooctahedron with CN = 11. The bicapped hexagonal antiprism (CN = 14) is typical for Zr2 atoms. The Cu atom is enclosed in a eight-vertex polyhedron (octahedron with two centered faces). The metallic type of bonding was indicated by an analysis of the interatomic distances and electronic structure calculation data.

Related literature

For general background, see: Dolotko *et al.* (2003); Giza *et al.* (2001, 2009); Zatorska *et al.* (2002*a*,*b*, 2004). For isotypic structures, see: Garcia & Corbett (1990); Pöttgen (1997); Rieger & Parthé (1965); Stetskiv *et al.* (2011). For calculation of the electronic structure using the tight-binding linear muffin-tin orbital (TB–LMTO) method in the atomic spheres approximation, see: Andersen (1975); Andersen & Jepsen (1984); Andersen *et al.* (1985, 1986).

Experimental

Crystal data	
Zr ₅ CuBi ₃	a = 8.8712 (4) Å
$M_r = 1146.58$	c = 6.0246 (3) Å
Hexagonal, P6 ₃ /mcm	V = 410.60 (3) Å

Z = 2Mo $K\alpha$ radiation $\mu = 72.54 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur3 CCD	
diffractometer	
Absorption correction: analytical	
(CrysAlis RED; Oxford Diffrac-	
tion, 2008)	
$T_{\rm min} = 0.231, T_{\rm max} = 0.654$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.041$ S = 0.87193 reflections T = 293 K $0.08 \times 0.04 \times 0.02 \text{ mm}$

D 1713 measured reflections
193 independent reflections
185 reflections with
$$I > 2\sigma(I)$$

 $\sim R_{int} = 0.136$

13 parameters $\Delta \rho_{\text{max}} = 1.92 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -1.54 \text{ e } \text{ Å}^{-3}$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

Financial support from the Ministry of Education and Science of Ukraine is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2112).

References

- Andersen, O. K. (1975). Phys. Rev. B, 12, 3060-3083.
- Andersen, O. K. & Jepsen, O. (1984). Phys. Rev. Lett. 53, 2571-2574.
- Andersen, O. K., Jepsen, O. & Glötzel, D. (1985). Highlights of Condensed Matter Theory, edited by F. Bassani, F. Fumi & M. P. Tosi, pp. 59–176. New York: North-Holland.
- Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Dolotko, O. V., Dmytriv, G. S. & Pavlyuk, V. V. (2003). J. Alloys Compd, 349, 180–184
- Garcia, E. & Corbett, J. D. (1990). *Inorg. Chem.* **29**(18), 3274–3282.
- Giza, K., Bala, H. & Pavlyuk, V. (2009). Mater. Chem. Phys. 114, 742–745.
- Giza, K., Iwasieczko, W., Drulis, H., Pavlyuk, V. & Bala, H. (2001). Mater. Sci. Eng. A, 303, 158–162.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Pöttgen, R. (1997). Z. Naturforsch. Teil B, 52, 141-144.
- Rieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232-241.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stetskiv, A., Tarasiuk, I., Misztal, R. & Pavlyuk, V. (2011). Acta Cryst. E67, i61.
- Zatorska, G. M., Dmytriv, G. S., Pavlyuk, V. V., Bartoszak-Adamska, E. &
- Jaskolski, M. (2002b). J. Alloys Compd, **346**, 154–157. Zatorska, G. M. Paylyuk, V. V. & Dayydov, V. M. (2002c). J.
- Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2002*a*). J. Alloys Compd, 333, 138–142.
- Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2004). J. Alloys Compd, 367, 80–84.

supporting information

Acta Cryst. (2013). E69, i51 [doi:10.1107/S1600536813019235]

Pentazirconium copper tribismuth

Agnieszka Balinska, Ivan Tarasiuk and Volodymyr Pavlyuk

S1. Comment

Zirconium intermetallic compounds are extensively investigated for the last 40 years as possible hydrogen storage materials. The results that we present in this paper is a continuation of the systematic study that we carried out for zirconium alloys with transition metals (Giza et al., 2001; Dolotko et al., 2003) as well as s-and p-elements (Zatorska et al., 2002a,b; 2004; Giza et al., 2009). So far, in the literature no data on ternary intermetallic compounds of Zr—Cu—Bi system has been found. However, it is known that closely related systems such as Zr—Cu—Sn (Pöttgen, 1997), Zr—Cu -Pb (Rieger & Parthé, 1965) and Zr-Cu-Sb (Garcia & Corbett, 1990) form Zr₃CuX₃ (where X=Sn, Pb, Sb) compounds with hexagonal Hf₅CuSn₃ structure type (superstructure to Ti₅Ga₄-type) with space group $P6_3/mcm$. Studying alloys of the Zr-Cu-Bi system we found the existence of isostructural Zr₅CuBi₃ compound and investigated its structure by single-crystal method. The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The environment of the Bi atoms is a tetragonal antiprism with one added atom and a coordination number equal 9. The polyhedron of Zr1 atom is a defective cubooctahedron with a coordination number equal 11. The bicapped hexagonal antiprism (c.n.=14) is typical for Zr2 atom. The Cu atom is enclosed in a 8-vertex polyhedron (octahedron with two centered faces). The distribution of zirconium and copper atoms in three-dimensional-nets consisted of Bi atoms are shown in Fig. 2a and distribution of bismuth and copper atoms in three-dimensional-nets consisted of Zr atoms are shown in Fig. 2b. In the first case the Bi atoms form a 6_3 corrugated nets and the Zr atoms (second case) form a 3_246 nets. The similar atomic nets was described for Tb₅LiSn₃ isostructural compound (Stetskiv et al., 2011).

The electronic structure of the Zr₅CuBi₃ compound was calculated using the tight-binding linear muffin-tin orbital (TB– LMTO) method in the atomic spheres approximation (TB– LMTO–ASA; Andersen, 1975; Andersen & Jepsen, 1984; Andersen *et al.*, 1985, 1986), using the experimental crystallographic data which are presented here. The Zr and Cu atoms donate their electrons to the Bi atoms. Therefore positive charge density can be observed around the atoms of transition elements (Zr and Cu) and negative charge density is around the bismuth atoms. The electron localization function (ELF) mapping and isosurfaces (ISO) are presented in Fig. 3a and Fig. 3b, respectively. The total and partial densities of states (DOS) of Zr₅CuBi₃ compound calculated by the TB–LMTO–ASA method are shown in Fig. 4. The Fermi level (EF) lies in a continuous DOS region indicating a metallic character for the title compound. The metallic type of bonding was confirmed also by an analysis of the interatomic distances.

S2. Experimental

The title compound was prepared from elemental zirconium (foil, 0.25 mm thick 99.8 at.%, Aldrich), copper (powder, pure, POCH) and bismuth (granules, 99.5 at.%, POCH). The pieces of the pure metals with a stoichiometry $Zr_{50}Cu_{20}Bi_{30}$ were pressed into pellet. The sample was melted in arc furnace under continuous argon flow. The losses in alloy composition during melting were checked by weight comparison of the initial mixtures and the alloys. Metallic grey prismatic crystals were found in a crushed alloy using a conventional light microscope.

S3. Refinement

The structure was solved after the analytical absorption correction. In the first stage of the refinement, the positions of the Zr, Cu and Bi atoms were obtained correctly by direct methods. After the last cycle of refinement the highest peak of 1.915 e/Å3 is at (0; 0.4552; 1/4) and 0.76 Å away from the Bi atom. The deepest hole -1.539 e/Å3 is at (0.2424; 0; 1/4) and 1.12 Å away from the same atom.

Figure 1

The projection of the unit cell and coordination polyhedra of the atoms.

Figure 2

The distribution of Zr and Cu atoms in three-dimensional-nets from Bi atoms (a) and distribution of Bi and Cu atoms in three-dimensional-nets from Zr atoms (b).

Figure 3

(*a*) The electron localization function (ELF) mapping and (*b*) isosurfaces of the electron localization function around the atoms for Zr_5CuBi_3 .

Figure 4

Total and partial DOS (densities of states) for Zr₅CuBi₃.

Pentazirconium copper tribismuth

Crystal data

Zr₅CuBi₃ $M_r = 1146.58$ Hexagonal, P6₃/mcm Hall symbol: -P 6c 2 a = 8.8712 (4) Å c = 6.0246 (3) Å V = 410.60 (3) Å³ Z = 2F(000) = 956

Data collection

Oxford Diffraction Xcalibur3 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω scans Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\min} = 0.231, T_{\max} = 0.654$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.041$ S = 0.87193 reflections $D_x = 9.274 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 185 reflections $\theta = 2.7-27.4^{\circ}$ $\mu = 72.54 \text{ mm}^{-1}$ T = 293 KPrism, metallic grey $0.08 \times 0.04 \times 0.02 \text{ mm}$

1713 measured reflections 193 independent reflections 185 reflections with $I > 2\sigma(I)$ $R_{int} = 0.136$ $\theta_{max} = 27.4^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = 0 \rightarrow 7$

13 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

$w = 1/[\sigma^2(F_o^2) + (0.010P)^2]$	$\Delta \rho_{\rm max} = 1.92$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -1.54 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Bi1	0.63082 (6)	0.63082 (6)	0.2500	0.00715 (19)	
Zr1	0.26831 (17)	0.26831 (17)	0.2500	0.0083 (3)	
Zr2	0.6667	0.3333	0.0000	0.0103 (4)	
Cu1	0.0000	0.0000	0.0000	0.0102 (10)	

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Bi1	0.0060 (2)	0.0060 (2)	0.0098 (3)	0.0033 (2)	0.000	0.000
Zrl	0.0075 (4)	0.0075 (4)	0.0102 (8)	0.0039 (5)	0.000	0.000
Zr2	0.0132 (7)	0.0132 (7)	0.0045 (11)	0.0066 (3)	0.000	0.000
Cul	0.0106 (14)	0.0106 (14)	0.009 (3)	0.0053 (7)	0.000	0.000

Geometric parameters (Å, °)

Bi1-Zr1 ⁱ	2.9319 (6)	Zr2—Zr2 ⁱⁱ	3.0123 (2)
Bi1—Zr1 ⁱⁱ	2.9319 (6)	Zr2—Zr2 ^{viii}	3.0123 (2)
Bi1—Zr1 ⁱⁱⁱ	3.1424 (5)	Zr2—Bi1 ^{ix}	3.1896 (2)
Bi1—Zr1 ^{iv}	3.1424 (5)	Zr2—Bi1 ⁱⁱ	3.1896 (2)
Bi1—Zr2 ^v	3.1896 (2)	Zr2—Bi1 ^{vi}	3.1896 (2)
Bi1—Zr2 ⁱⁱ	3.1896 (2)	Zr2—Bi1 ^x	3.1896 (2)
Bi1—Zr2	3.1896 (2)	Zr2—Bi1 ^{iv}	3.1896 (2)
Bi1—Zr2 ^{iv}	3.1896 (2)	Zr2—Zr1 ⁱⁱ	3.6126 (9)
Bi1—Zr1	3.2159 (17)	Zr2—Zr1 ^{vi}	3.6126 (9)
Zr1—Cu1	2.8167 (13)	Zr2—Zr1 ^{ix}	3.6126 (9)
Zr1—Cu1 ^v	2.8167 (13)	Zr2—Zr1 ^x	3.6126 (9)
Zr1—Bi1 ^{vi}	2.9319 (6)	Cu1—Zr1 ^{xi}	2.8167 (13)
Zr1—Bi1 ^{vii}	2.9319 (6)	Cu1—Zr1 ^{ix}	2.8167 (13)
Zr1—Bi1 ⁱⁱⁱ	3.1424 (5)	Cu1—Zr1 ^{xii}	2.8167 (13)
Zr1—Bi1 ^{iv}	3.1424 (5)	Cu1—Zr1 ^{xiii}	2.8167 (13)
Zr1—Zr2 ⁱⁱ	3.6126 (9)	Cu1—Zr1 ^{xiv}	2.8167 (13)
Zr1—Zr2 ^v	3.6126 (9)	Cu1—Cu1 ^v	3.0123 (2)

Zr1—Zr2	3.6126 (9)	Cu1—Cu1 ^{xii}	3.0123 (2)
$Zr1$ — $Zr2^{iv}$	3.6126 (9)		~ /
Zr1 ⁱ —Bi1—Zr1 ⁱⁱ	89.35 (6)	Zr2 ^{viii} —Zr2—Bi1 ^{ix}	61.822 (2)
Zr1 ⁱ —Bi1—Zr1 ⁱⁱⁱ	78.32 (3)	Zr2 ⁱⁱ —Zr2—Bi1 ⁱⁱ	61.822 (2)
Zr1 ⁱⁱ —Bi1—Zr1 ⁱⁱⁱ	78.32 (3)	Zr2 ^{viii} —Zr2—Bi1 ⁱⁱ	118.178 (2)
Zr1 ⁱ —Bi1—Zr1 ^{iv}	78.32 (3)	Bi1 ^{ix} —Zr2—Bi1 ⁱⁱ	88.460 (16)
Zr1 ⁱⁱ —Bi1—Zr1 ^{iv}	78.32 (3)	Zr2 ⁱⁱ —Zr2—Bi1 ^{vi}	61.822 (2)
$Zr1^{iii}$ —Bi1— $Zr1^{iv}$	146.91 (6)	Zr2 ^{viii} —Zr2—Bi1 ^{vi}	118.178 (2)
Zr1 ⁱ —Bi1—Zr2 ^v	72.20 (3)	Bi1 ^{ix} —Zr2—Bi1 ^{vi}	73.185 (10)
Zr1 ⁱⁱ —Bi1—Zr2 ^v	145.409 (19)	Bi1 ⁱⁱ —Zr2—Bi1 ^{vi}	99.528 (3)
Zr1 ⁱⁱⁱ —Bi1—Zr2 ^v	69.571 (14)	Zr2 ⁱⁱ —Zr2—Bi1 ^x	118.178 (2)
Zr1 ^{iv} —Bi1—Zr2 ^v	123.798 (7)	Zr2 ^{viii} —Zr2—Bi1 ^x	61.822 (2)
Zr1 ⁱ —Bi1—Zr2 ⁱⁱ	145.409 (19)	Bi1 ^{ix} —Zr2—Bi1 ^x	99.528 (3)
Zr1 ⁱⁱ —Bi1—Zr2 ⁱⁱ	72.20 (3)	Bi1 ⁱⁱ —Zr2—Bi1 ^x	73.185 (10)
Zr1 ⁱⁱⁱ —Bi1—Zr2 ⁱⁱ	69.571 (14)	Bi1 ^{vi} —Zr2—Bi1 ^x	170.093 (17)
Zr1 ^{iv} —Bi1—Zr2 ⁱⁱ	123.798 (7)	Zr2 ⁱⁱ —Zr2—Bi1 ^{iv}	118.178 (2)
Zr2 ^v —Bi1—Zr2 ⁱⁱ	106.815 (9)	Zr2 ^{viii} —Zr2—Bi1 ^{iv}	61.822 (2)
Zr1 ⁱ —Bi1—Zr2	145.409 (19)	Bi1 ^{ix} —Zr2—Bi1 ^{iv}	99.528 (3)
Zr1 ⁱⁱ —Bi1—Zr2	72.20 (3)	Bi1 ⁱⁱ —Zr2—Bi1 ^{iv}	170.093 (17)
Zr1 ⁱⁱⁱ —Bi1—Zr2	123.798 (7)	Bi1 ^{vi} —Zr2—Bi1 ^{iv}	88.460 (16)
Zr1 ^{iv} —Bi1—Zr2	69.571 (14)	Bi1 ^x —Zr2—Bi1 ^{iv}	99.528 (3)
Zr2 ^v —Bi1—Zr2	137.327 (18)	Zr2 ⁱⁱ —Zr2—Bi1	61.822 (2)
Zr2 ⁱⁱ —Bi1—Zr2	56.356 (5)	Zr2 ^{viii} —Zr2—Bi1	118.178 (2)
Zr1 ⁱ —Bi1—Zr2 ^{iv}	72.20 (3)	Bi1 ^{ix} —Zr2—Bi1	170.093 (17)
Zr1 ⁱⁱ —Bi1—Zr2 ^{iv}	145.409 (19)	Bil ⁱⁱ —Zr2—Bil	99.528 (3)
Zr1 ⁱⁱⁱ —Bi1—Zr2 ^{iv}	123.798 (7)	Bi1 ^{vi} —Zr2—Bi1	99.528 (3)
Zr1 ^{iv} —Bi1—Zr2 ^{iv}	69.571 (14)	Bi1 ^x —Zr2—Bi1	88.460 (16)
Zr2 ^v —Bi1—Zr2 ^{iv}	56.356 (5)	Bi1 ^{iv} —Zr2—Bi1	73.185 (9)
Zr2 ⁱⁱ —Bi1—Zr2 ^{iv}	137.327 (18)	$Zr2^{ii}$ — $Zr2$ — $Zr1^{ii}$	65.360 (7)
Zr2—Bi1—Zr2 ^{iv}	106.815 (10)	Zr2 ^{viii} —Zr2—Zr1 ⁱⁱ	114.640 (7)
Zr1 ⁱ —Bi1—Zr1	135.33 (3)	Bi1 ^{ix} —Zr2—Zr1 ⁱⁱ	139.216 (18)
Zr1 ⁱⁱ —Bi1—Zr1	135.33 (3)	Bi1 ⁱⁱ —Zr2—Zr1 ⁱⁱ	56.01 (2)
Zr1 ⁱⁱⁱ —Bi1—Zr1	106.55 (3)	Bi1 ^{vi} —Zr2—Zr1 ⁱⁱ	127.097 (6)
Zr1 ^{iv} —Bi1—Zr1	106.55 (3)	Bi1 ^x —Zr2—Zr1 ⁱⁱ	54.600 (5)
Zr2 ^v —Bi1—Zr1	68.664 (9)	Bi1 ^{iv} —Zr2—Zr1 ⁱⁱ	114.38 (2)
Zr2 ⁱⁱ —Bi1—Zr1	68.664 (9)	Bi1—Zr2—Zr1 ⁱⁱ	50.598 (19)
Zr2—Bi1—Zr1	68.664 (9)	$Zr2^{ii}$ — $Zr2$ — $Zr1^{vi}$	65.360 (7)
Zr2 ^{iv} —Bi1—Zr1	68.664 (9)	$Zr2^{viii}$ $Zr2$ $Zr1^{vi}$	114.640 (7)
Cu1—Zr1—Cu1 ^v	64.65 (3)	Bi1 ^{ix} —Zr2—Zr1 ^{vi}	54.600 (5)
Cu1—Zr1—Bi1 ^{vi}	77.64 (3)	Bi1 ⁱⁱ —Zr2—Zr1 ^{vi}	50.598 (19)
Cu1 ^v —Zr1—Bi1 ^{vi}	77.64 (3)	Bi1 ^{vi} —Zr2—Zr1 ^{vi}	56.01 (2)
Cu1—Zr1—Bi1 ^{vii}	77.64 (3)	Bi1 ^x —Zr2—Zr1 ^{vi}	114.38 (2)
Cu1 ^v —Zr1—Bi1 ^{vii}	77.64 (3)	Bi1 ^{iv} —Zr2—Zr1 ^{vi}	139.216 (18)
Bi1 ^{vi} —Zr1—Bi1 ^{vii}	150.65 (6)	Bi1—Zr2—Zr1 ^{vi}	127.097 (6)
Cu1—Zr1—Bi1 ⁱⁱⁱ	138.87 (4)	$Zr1^{ii}$ $Zr2$ $Zr1^{vi}$	103.844 (8)
Cu1 ^v —Zr1—Bi1 ⁱⁱⁱ	74.221 (13)	$Zr2^{ii}$ — $Zr2$ — $Zr1^{ix}$	114.640 (7)
Bi1 ^{vi} —Zr1—Bi1 ⁱⁱⁱ	94.137 (2)	$Zr2^{viii}$ — $Zr2$ — $Zr1^{ix}$	65.360 (7)
	× /		< / <

Bi1 ^{vii} —Zr1—Bi1 ⁱⁱⁱ	94.137 (2)	Bi1 ^{ix} —Zr2—Zr1 ^{ix}	56.01 (2)
Cu1—Zr1—Bi1 ^{iv}	74.221 (13)	Bi1 ⁱⁱ —Zr2—Zr1 ^{ix}	139.216 (18)
Cu1 ^v —Zr1—Bi1 ^{iv}	138.87 (4)	Bi1 ^{vi} —Zr2—Zr1 ^{ix}	54.600 (5)
Bi1 ^{vi} —Zr1—Bi1 ^{iv}	94.137 (2)	$Bi1^{x}$ — $Zr2$ — $Zr1^{ix}$	127.097 (6)
Bi1 ^{vii} —Zr1—Bi1 ^{iv}	94.137 (2)	Bi1 ^{iv} —Zr2—Zr1 ^{ix}	50.598 (19)
Bi1 ⁱⁱⁱ —Zr1—Bi1 ^{iv}	146.91 (6)	Bi1—Zr2—Zr1 ^{ix}	114.38 (2)
Cu1—Zr1—Bi1	147.675 (17)	Zr1 ⁱⁱ —Zr2—Zr1 ^{ix}	164.10 (4)
Cu1 ^v —Zr1—Bi1	147.675 (17)	$Zr1^{vi}$ — $Zr2$ — $Zr1^{ix}$	89.71 (3)
Bi1 ^{vi} —Zr1—Bi1	104.67 (3)	$Zr2^{ii}$ — $Zr2$ — $Zr1^{x}$	114.640 (7)
Bi1 ^{vii} —Zr1—Bi1	104.67 (3)	$Zr2^{viii}$ $Zr2$ $Zr1^{x}$	65.360 (7)
Bi1 ⁱⁱⁱ —Zr1—Bi1	73.45 (3)	Bi1 ^{ix} —Zr2—Zr1 ^x	50.598 (19)
Bi1 ^{iv} —Zr1—Bi1	73.45 (3)	$Bi1^{ii}$ — $Zr2$ — $Zr1^x$	54.600 (5)
Cu1—Zr1—Zr2 ⁱⁱ	134.725 (16)	$Bi1^{vi}$ — $Zr2$ — $Zr1^x$	114.38 (2)
Cu1 ^v —Zr1—Zr2 ⁱⁱ	104.942 (7)	$Bi1^{x}$ — $Zr2$ — $Zr1^{x}$	56.01 (2)
$Bi1^{vi}$ — $Zr1$ — $Zr2^{ii}$	57.205 (10)	$Bi1^{iv}$ — $Zr2$ — $Zr1^x$	127.097 (6)
Bi1 ^{vii} —Zr1—Zr2 ⁱⁱ	146.09 (3)	Bi1—Zr2—Zr1 ^x	139.216 (18)
$Bi1^{iii}$ — $Zr1$ — $Zr2^{ii}$	55.829 (13)	$Zr1^{ii}$ $Zr2$ $Zr1^{x}$	89.71 (3)
$Bi1^{iv}$ $Zr1$ $Zr2^{ii}$	103.75 (3)	$Zr1^{vi}$ — $Zr2$ — $Zr1^{x}$	64.19 (4)
Bi1—Zr1—Zr2 ⁱⁱ	55.32 (2)	$Zr1^{ix}$ $Zr2$ $Zr1^{x}$	103.844 (8)
Cu1—Zr1—Zr2 ^v	134.725 (16)	Zr1—Cu1—Zr1 ^{xi}	180.00 (6)
$Cu1^v$ — $Zr1$ — $Zr2^v$	104.942 (7)	Zr1—Cu1—Zr1 ^{ix}	85.92 (2)
$Bi1^{vi}$ — $Zr1$ — $Zr2^{v}$	146.09 (3)	$Zr1^{xi}$ — $Cu1$ — $Zr1^{ix}$	94.08 (2)
Bi1 ^{vii} —Zr1—Zr2 ^v	57.205 (11)	Zr1—Cu1—Zr1 ^{xii}	85.92 (2)
Bi1 ⁱⁱⁱ —Zr1—Zr2 ^v	55.829 (13)	$Zr1^{xi}$ — $Cu1$ — $Zr1^{xii}$	94.08 (2)
Bi1 ^{iv} —Zr1—Zr2 ^v	103.75 (3)	Zr1 ^{ix} —Cu1—Zr1 ^{xii}	94.08 (2)
Bi1—Zr1—Zr2 ^v	55.32 (2)	Zr1—Cu1—Zr1 ^{xiii}	94.08 (2)
$Zr2^{ii}$ — $Zr1$ — $Zr2^{v}$	90.29 (3)	$Zr1^{xi}$ — $Cu1$ — $Zr1^{xiii}$	85.92 (2)
Cu1—Zr1—Zr2	104.942 (7)	$Zr1^{ix}$ — $Cu1$ — $Zr1^{xiii}$	85.92 (2)
Cu1 ^v —Zr1—Zr2	134.725 (16)	Zr1 ^{xii} —Cu1—Zr1 ^{xiii}	180.00 (3)
Bi1 ^{vi} —Zr1—Zr2	57.205 (10)	Zr1—Cu1—Zr1 ^{xiv}	94.08 (2)
Bi1 ^{vii} —Zr1—Zr2	146.09 (3)	$Zr1^{xi}$ — $Cu1$ — $Zr1^{xiv}$	85.92 (2)
Bi1 ⁱⁱⁱ —Zr1—Zr2	103.75 (3)	Zr1 ^{ix} —Cu1—Zr1 ^{xiv}	180.00 (3)
Bi1 ^{iv} —Zr1—Zr2	55.829 (13)	Zr1 ^{xii} —Cu1—Zr1 ^{xiv}	85.92 (2)
Bi1—Zr1—Zr2	55.32 (2)	Zr1 ^{xiii} —Cu1—Zr1 ^{xiv}	94.08 (2)
Zr2 ⁱⁱ —Zr1—Zr2	49.279 (13)	Zr1—Cu1—Cu1 ^v	57.675 (17)
Zr2 ^v —Zr1—Zr2	110.65 (4)	Zr1 ^{xi} —Cu1—Cu1 ^v	122.325 (17)
Cu1—Zr1—Zr2 ^{iv}	104.942 (7)	$Zr1^{ix}$ — $Cu1$ — $Cu1^{v}$	122.325 (17)
$Cu1^v$ — $Zr1$ — $Zr2^{iv}$	134.725 (16)	Zr1 ^{xii} —Cu1—Cu1 ^v	122.325 (17)
Bi1 ^{vi} —Zr1—Zr2 ^{iv}	146.09 (3)	Zr1 ^{xiii} —Cu1—Cu1 ^v	57.675 (17)
Bi1 ^{vii} —Zr1—Zr2 ^{iv}	57.205 (10)	$Zr1^{xiv}$ — $Cu1$ — $Cu1^v$	57.675 (17)
Bi1 ⁱⁱⁱ —Zr1—Zr2 ^{iv}	103.75 (3)	Zr1—Cu1—Cu1 ^{xii}	122.325 (17)
Bi1 ^{iv} —Zr1—Zr2 ^{iv}	55.829 (13)	Zr1 ^{xi} —Cu1—Cu1 ^{xii}	57.675 (17)
Bi1—Zr1—Zr2 ^{iv}	55.32 (2)	Zr1 ^{ix} —Cu1—Cu1 ^{xii}	57.675 (17)
$Zr2^{ii}$ — $Zr1$ — $Zr2^{iv}$	110.65 (4)	$Zr1^{xii}$ — $Cu1$ — $Cu1^{xii}$	57.675 (17)
$Zr2^{v}$ — $Zr1$ — $Zr2^{iv}$	49.279 (13)	Zr1 ^{xiii} —Cu1—Cu1 ^{xii}	122.325 (17)
$Zr2$ — $Zr1$ — $Zr2^{iv}$	90.29 (3)	Zr1 ^{xiv} —Cu1—Cu1 ^{xii}	122.325 (17)

$Zr2^{ii}$ — $Zr2$ — $Zr2^{viii}$	180.0	Cu1 ^v —Cu1—Cu1 ^{xii}	180.0
Zr2 ⁱⁱ —Zr2—Bi1 ^{ix}	118.178 (2)		

Symmetry codes: (i) -*y*+1, *x*-*y*+1, *z*; (ii) -*x*+*y*+1, -*x*+1, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*; (v) *x*-*y*, *x*, *z*+1/2; (vi) -*y*+1, *x*-*y*, *z*; (vii) -*x*+*y*, -*x*+1, -*z*+1/2; (viii) -*x*+*y*+1, -*x*+1, -*z*-1/2; (ix) *y*, -*x*+*y*, -*z*; (x) *x*-*y*+1, *x*, *z*-1/2; (xi) *x*-*y*, *x*, *z*-1/2; (xiii) -*x*+*y*, -*x*, -*z*+1/2; (xiv) -*y*, *x*-*y*, *z*.