[Journal logo]

Volume 69 
Part 8 
Page i51  
August 2013  

Received 3 July 2013
Accepted 11 July 2013
Online 17 July 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Zr-Cu) = 0.001 Å
R = 0.023
wR = 0.041
Data-to-parameter ratio = 14.8
Details
Open access

Pentazirconium copper tribismuth

aInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland, and bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005, Lviv, Ukraine
Correspondence e-mail: tarasiuk.i@gmail.com

Pentazirconium copper tribismuth, Zr5CuBi3, crystallizes in the hexagonal Hf5CuSn3 structure type. The asymmetric unit contains two Zr sites (site symmetries 3.2 and m2m), one Cu site (site symmetry 3.m) and one Bi site (site symmetry m2m). The environment of the Bi atoms is a tetragonal antiprism with one added atom and a coordination number (CN) of 9. The polyhedron around the Zr1 atom is a defective cubooctahedron with CN = 11. The bicapped hexagonal antiprism (CN = 14) is typical for Zr2 atoms. The Cu atom is enclosed in a eight-vertex polyhedron (octahedron with two centered faces). The metallic type of bonding was indicated by an analysis of the interatomic distances and electronic structure calculation data.

Related literature

For general background, see: Dolotko et al. (2003[Dolotko, O. V., Dmytriv, G. S. & Pavlyuk, V. V. (2003). J. Alloys Compd, 349, 180-184.]); Giza et al. (2001[Giza, K., Iwasieczko, W., Drulis, H., Pavlyuk, V. & Bala, H. (2001). Mater. Sci. Eng. A, 303, 158-162.], 2009[Giza, K., Bala, H. & Pavlyuk, V. (2009). Mater. Chem. Phys. 114, 742-745.]); Zatorska et al. (2002a[Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2002a). J. Alloys Compd, 333, 138-142.],b[Zatorska, G. M., Dmytriv, G. S., Pavlyuk, V. V., Bartoszak-Adamska, E. & Jaskolski, M. (2002b). J. Alloys Compd, 346, 154-157.], 2004[Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2004). J. Alloys Compd, 367, 80-84.]). For isotypic structures, see: Garcia & Corbett (1990[Garcia, E. & Corbett, J. D. (1990). Inorg. Chem. 29(18), 3274-3282.]); Pöttgen (1997[Pöttgen, R. (1997). Z. Naturforsch. Teil B, 52, 141-144.]); Rieger & Parthé (1965[Rieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232-241.]); Stetskiv et al. (2011[Stetskiv, A., Tarasiuk, I., Misztal, R. & Pavlyuk, V. (2011). Acta Cryst. E67, i61.]). For calculation of the electronic structure using the tight-binding linear muffin-tin orbital (TB-LMTO) method in the atomic spheres approximation, see: Andersen (1975[Andersen, O. K. (1975). Phys. Rev. B, 12, 3060-3083.]); Andersen & Jepsen (1984[Andersen, O. K. & Jepsen, O. (1984). Phys. Rev. Lett. 53, 2571-2574.]); Andersen et al. (1985[Andersen, O. K., Jepsen, O. & Glötzel, D. (1985). Highlights of Condensed Matter Theory, edited by F. Bassani, F. Fumi & M. P. Tosi, pp. 59-176. New York: North-Holland.], 1986[Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.]).

Experimental

Crystal data
  • Zr5CuBi3

  • Mr = 1146.58

  • Hexagonal, P 63 /m c m

  • a = 8.8712 (4) Å

  • c = 6.0246 (3) Å

  • V = 410.60 (3) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 72.54 mm-1

  • T = 293 K

  • 0.08 × 0.04 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.231, Tmax = 0.654

  • 1713 measured reflections

  • 193 independent reflections

  • 185 reflections with I > 2[sigma](I)

  • Rint = 0.136

Refinement
  • R[F2 > 2[sigma](F2)] = 0.023

  • wR(F2) = 0.041

  • S = 0.87

  • 193 reflections

  • 13 parameters

  • [Delta][rho]max = 1.92 e Å-3

  • [Delta][rho]min = -1.54 e Å-3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2112 ).


Acknowledgements

Financial support from the Ministry of Education and Science of Ukraine is acknowledged.

References

Andersen, O. K. (1975). Phys. Rev. B, 12, 3060-3083.  [CrossRef] [ChemPort]
Andersen, O. K. & Jepsen, O. (1984). Phys. Rev. Lett. 53, 2571-2574.  [CrossRef] [ChemPort] [Web of Science]
Andersen, O. K., Jepsen, O. & Glötzel, D. (1985). Highlights of Condensed Matter Theory, edited by F. Bassani, F. Fumi & M. P. Tosi, pp. 59-176. New York: North-Holland.
Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.  [CrossRef] [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Dolotko, O. V., Dmytriv, G. S. & Pavlyuk, V. V. (2003). J. Alloys Compd, 349, 180-184.  [Web of Science] [CrossRef] [ChemPort]
Garcia, E. & Corbett, J. D. (1990). Inorg. Chem. 29(18), 3274-3282.  [CrossRef] [Web of Science]
Giza, K., Bala, H. & Pavlyuk, V. (2009). Mater. Chem. Phys. 114, 742-745.  [Web of Science] [CrossRef] [ChemPort]
Giza, K., Iwasieczko, W., Drulis, H., Pavlyuk, V. & Bala, H. (2001). Mater. Sci. Eng. A, 303, 158-162.
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Pöttgen, R. (1997). Z. Naturforsch. Teil B, 52, 141-144.
Rieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232-241.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Stetskiv, A., Tarasiuk, I., Misztal, R. & Pavlyuk, V. (2011). Acta Cryst. E67, i61.  [CrossRef] [IUCr Journals]
Zatorska, G. M., Dmytriv, G. S., Pavlyuk, V. V., Bartoszak-Adamska, E. & Jaskolski, M. (2002b). J. Alloys Compd, 346, 154-157.  [Web of Science] [CrossRef] [ChemPort]
Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2002a). J. Alloys Compd, 333, 138-142.  [Web of Science] [CrossRef] [ChemPort]
Zatorska, G. M., Pavlyuk, V. V. & Davydov, V. M. (2004). J. Alloys Compd, 367, 80-84.  [Web of Science] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, i51  [ doi:10.1107/S1600536813019235 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.