[Journal logo]

Volume 69 
Part 8 
Pages o1337-o1338  
August 2013  

Received 2 July 2013
Accepted 23 July 2013
Online 27 July 2013

Key indicators
Single-crystal X-ray study
T = 200 K
Mean [sigma](C-C) = 0.005 Å
R = 0.046
wR = 0.105
Data-to-parameter ratio = 14.6
Details
Open access

1-(5-Bromo-2-oxoindolin-3-ylidene)-4-phenylthiosemicarbazide

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-903 Rio Grande, RS, Brazil,bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão, SE, Brazil
Correspondence e-mail: adriano@daad-alumni.de

In the title compound, C15H11BrN4OS, the least-squares plane through the 5-bromoisatin fragment forms a dihedral angle of 13.63 (14)° with the phenyl ring. The molecular conformation features intramolecular N-H...N and N-H...O hydrogen bonds. In the crystal, molecules are connected via pairs of N-H...O interactions into centrosymmetric dimers. Additionally, [pi]-[pi] stacking interactions link molecules into chains parallel to the a axis with short C...C distances being observed between the phenyl and thiocarbonyl [3.236 (8) Å] groups and between the thiocarbonyl and carbonyl [3.351 (4) Å] groups of stacked molecules.

Related literature

For the pharmacological properties of isatin-thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003[Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.]). For the synthesis of 5-bromoisatin-3-thiosemicarbazone, see: Campaigne & Archer (1952[Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.]). For the crystal structure of 1-(5-bromo-2-oxoindolin-3-ylidene)thiosemicarbazide acetonitrile monosolvate, see: Pederzolli et al. (2011[Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11BrN4OS

  • Mr = 375.25

  • Monoclinic, P 21 /c

  • a = 5.6882 (3) Å

  • b = 18.4086 (9) Å

  • c = 14.4668 (10) Å

  • [beta] = 91.272 (8)°

  • V = 1514.47 (15) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.86 mm-1

  • T = 200 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.633, Tmax = 0.677

  • 13502 measured reflections

  • 2903 independent reflections

  • 2235 reflections with I > 2[sigma](I)

  • Rint = 0.064

Refinement
  • R[F2 > 2[sigma](F2)] = 0.046

  • wR(F2) = 0.105

  • S = 1.04

  • 2903 reflections

  • 199 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.67 e Å-3

  • [Delta][rho]min = -1.11 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...O1i 0.88 2.00 2.858 (3) 166
N3-H3...O1 0.88 2.07 2.762 (3) 135
N4-H4A...N2 0.88 2.16 2.613 (4) 112
Symmetry code: (i) -x, -y+1, -z+3.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2102 ).


Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig-Holstein, Germany. We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities. We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029-1 and PRONEX-CNPq-FAPERGS projects. KCTB thanks FAPEAM for the award of a scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.  [CrossRef]
Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.  [CrossRef] [PubMed] [ChemPort]
Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804.  [CSD] [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1337-o1338   [ doi:10.1107/S1600536813020497 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.