organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1337-o1338

1-(5-Bromo-2-oxoindolin-3-yl­­idene)-4-phenyl­thio­semicarbazide

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-903 Rio Grande, RS, Brazil, bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão, SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

(Received 2 July 2013; accepted 23 July 2013; online 27 July 2013)

In the title compound, C15H11BrN4OS, the least-squares plane through the 5-bromo­isatin fragment forms a dihedral angle of 13.63 (14)° with the phenyl ring. The mol­ecular conformation features intra­molecular N—H⋯N and N—H⋯O hydrogen bonds. In the crystal, mol­ecules are connected via pairs of N—H⋯O inter­actions into centrosymmetric dimers. Additionally, ππ stacking inter­actions link mol­ecules into chains parallel to the a axis with short C⋯C distances being observed between the phenyl and thio­carbonyl [3.236 (8) Å] groups and between the thio­carbonyl and carbonyl [3.351 (4) Å] groups of stacked mol­ecules.

Related literature

For the pharmacological properties of isatin-thio­semi­carbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003[Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.]). For the synthesis of 5-bromo­isatin-3-thio­semicarbazone, see: Campaigne & Archer (1952[Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.]). For the crystal structure of 1-(5-bromo-2-oxoindolin-3-yl­idene)thio­semicarbazide aceto­nitrile monosolvate, see: Pederzolli et al. (2011[Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11BrN4OS

  • Mr = 375.25

  • Monoclinic, P 21 /c

  • a = 5.6882 (3) Å

  • b = 18.4086 (9) Å

  • c = 14.4668 (10) Å

  • β = 91.272 (8)°

  • V = 1514.47 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 200 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.633, Tmax = 0.677

  • 13502 measured reflections

  • 2903 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.105

  • S = 1.04

  • 2903 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.00 2.858 (3) 166
N3—H3⋯O1 0.88 2.07 2.762 (3) 135
N4—H4A⋯N2 0.88 2.16 2.613 (4) 112
Symmetry code: (i) -x, -y+1, -z+3.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, isatin-based synthetic thiosemicarbazones show pharmacological activity against cruzain, falcipain-2 and rhodesain (Chiyanzu et al., 2003). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of 5-bromoisatin-3-(4-phenyl)thiosemicarbazone. In the title compound, in which the molecular structure matches the asymmetric unit, the maximal deviation from the least squares plane through all non-hydrogen atoms amounts to 0.2917 (33) Å for C14. The molecule shows an E conformation for the atoms about the N2—N3 bond (Fig. 1). The E conformation for the thiosemicarbazone fragment is also observed in the crystal structure of the 5-bromoisatin-3-thiosemicarbazone acetonitrile monosolvate (Pederzolli et al., 2011) and is related with the intramolecular N—H···N and N—H···O hydrogen-bonding interactions (Fig. 1; Table 1). The mean deviations from the least squares planes for the 5-bromoisatin, C1—C8/Br1/O1 and the terminal aromatic ring, C10—C15, fragments amounts to 0.0459 (19) Å for O1 and 0.0032 (22) Å for C10, respectively, and the dihedral angle between the two planes is 13.63 (14)°. The molecules are connected via centrosymmetric pairs of N—H···O interactions (Fig. 2; Table 1). Additionally, ππ-interactions are observed, with C···C distances of 3.236 (8), 3.351 (4), 3.451 (5) and 3.471 (7) Å. The molecules are arranged in layers and are stacked into the direction of the crystallographic a-axis (Fig. 3).

Related literature top

For the pharmacological properties of isatin-thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003). For the synthesis of 5-bromoisatin-3-thiosemicarbazone, see: Campaigne & Archer (1952). For the crystal structure of 1-(5-bromo-2-oxoindolin-3-ylidene)thiosemicarbazide acetonitrile monosolvate, see: Pederzolli et al. (2011).

Experimental top

The starting materials were commercially available and were used without further purification. The 5-bromoisatine-3-(4-phenyl)thiosemicarbazone synthesis was adapted from a procedure reported previously (Campaigne & Archer, 1952). The hydrochloric acid catalyzed reaction of 5-bromoisatin (8.83 mmol) and (4-phenyl)thiosemicarbazide (8.83 mmol) in a 1:1 mixture of ethanol and water (50 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction of the title compound were obtained by the slow evaporation of the solvents.

Refinement top

All C—H and N—H H atoms were located in difference map, but were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C, N) using a riding model with C—H = 0.93 Å for aromatic and N—H = 0.88 Å for N-bound H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Molecules of the title compound connected through inversion centers via pairs of N—H···O interactions. Intramolecular N—H···N and N—H···O hydrogen bonds are also shown. H-interactions are indicated as dashed lines and the Figure is simplified for clarity. Symmetry code: (i)-x,-y + 1,-z + 3.
[Figure 3] Fig. 3. Crystal structure of the title compound in a view along the crystallographic c-axis. The ππ-interactions are drawn as dashed lines, highlighting C···C distances ranging from 3.236 (8) to 3.471 (7) Å. The molecular arrangment in layers, stacked into the direction of the crystallographic a-axis, is simplified for clarity.
1-(5-Bromo-2-oxoindolin-3-ylidene)-4-phenylthiosemicarbazide top
Crystal data top
C15H11BrN4OSF(000) = 752
Mr = 375.25Dx = 1.646 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13698 reflections
a = 5.6882 (3) Åθ = 2.6–26.0°
b = 18.4086 (9) ŵ = 2.86 mm1
c = 14.4668 (10) ÅT = 200 K
β = 91.272 (8)°Block, yellow
V = 1514.47 (15) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
2903 independent reflections
Radiation source: fine-focus sealed tube, Stoe IPDS-12235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scansθmax = 26.0°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 66
Tmin = 0.633, Tmax = 0.677k = 2222
13502 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 1.4796P]
where P = (Fo2 + 2Fc2)/3
2903 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
C15H11BrN4OSV = 1514.47 (15) Å3
Mr = 375.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6882 (3) ŵ = 2.86 mm1
b = 18.4086 (9) ÅT = 200 K
c = 14.4668 (10) Å0.12 × 0.10 × 0.08 mm
β = 91.272 (8)°
Data collection top
Stoe IPDS-1
diffractometer
2903 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2235 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.677Rint = 0.064
13502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.67 e Å3
2903 reflectionsΔρmin = 1.11 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0836 (5)0.47322 (14)1.38606 (19)0.0312 (6)
H10.02710.45831.42310.037*
C10.2595 (5)0.51911 (16)1.4116 (2)0.0283 (7)
O10.2888 (4)0.54902 (12)1.48762 (15)0.0316 (5)
C20.4124 (5)0.52739 (15)1.3285 (2)0.0247 (6)
C30.3024 (5)0.48403 (15)1.2553 (2)0.0261 (6)
C40.3560 (6)0.47236 (17)1.1638 (2)0.0324 (7)
H40.49150.49341.13740.039*
C50.2042 (7)0.42873 (18)1.1120 (2)0.0374 (8)
Br10.28023 (10)0.40737 (3)0.98769 (3)0.0688 (2)
C60.0060 (6)0.39716 (18)1.1491 (3)0.0381 (8)
H60.09340.36751.11130.046*
C70.0482 (6)0.40850 (17)1.2412 (3)0.0351 (8)
H70.18260.38681.26750.042*
C80.1004 (5)0.45251 (16)1.2930 (2)0.0283 (7)
N20.6012 (4)0.56591 (13)1.32193 (18)0.0256 (5)
N30.6730 (5)0.60375 (13)1.39722 (17)0.0260 (5)
H30.60040.59761.44970.031*
C90.8582 (5)0.65192 (15)1.3933 (2)0.0245 (6)
S10.91317 (16)0.70212 (5)1.48665 (6)0.0369 (2)
N40.9676 (4)0.65094 (13)1.31167 (17)0.0260 (5)
H4A0.91230.61861.27210.031*
C101.1570 (5)0.69326 (15)1.2785 (2)0.0241 (6)
C111.3184 (5)0.72936 (16)1.3353 (2)0.0270 (6)
H111.30350.72831.40050.032*
C121.5030 (6)0.76727 (17)1.2954 (3)0.0348 (7)
H121.61350.79221.33400.042*
C131.5277 (6)0.76906 (19)1.2009 (3)0.0373 (8)
H131.65370.79521.17450.045*
C141.3681 (6)0.7327 (2)1.1451 (2)0.0410 (8)
H141.38470.73351.07990.049*
C151.1830 (6)0.6949 (2)1.1832 (2)0.0355 (8)
H151.07360.67001.14400.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0231 (15)0.0324 (14)0.0385 (15)0.0034 (10)0.0124 (11)0.0030 (11)
C10.0216 (17)0.0269 (15)0.0367 (18)0.0058 (11)0.0065 (13)0.0074 (12)
O10.0272 (13)0.0369 (12)0.0312 (12)0.0018 (9)0.0096 (9)0.0014 (9)
C20.0189 (16)0.0248 (14)0.0307 (16)0.0013 (11)0.0065 (12)0.0032 (11)
C30.0218 (17)0.0222 (14)0.0344 (17)0.0003 (11)0.0059 (12)0.0043 (12)
C40.0320 (19)0.0305 (16)0.0350 (18)0.0055 (13)0.0058 (14)0.0036 (13)
C50.047 (2)0.0325 (17)0.0329 (18)0.0087 (15)0.0038 (15)0.0041 (13)
Br10.1019 (4)0.0700 (3)0.0350 (2)0.0476 (3)0.0120 (2)0.00818 (19)
C60.036 (2)0.0311 (17)0.046 (2)0.0080 (14)0.0056 (15)0.0015 (14)
C70.0242 (18)0.0318 (16)0.050 (2)0.0061 (13)0.0075 (14)0.0040 (14)
C80.0219 (17)0.0252 (14)0.0380 (18)0.0012 (11)0.0067 (13)0.0059 (12)
N20.0233 (14)0.0235 (12)0.0300 (14)0.0007 (10)0.0042 (10)0.0025 (10)
N30.0251 (14)0.0289 (13)0.0245 (13)0.0019 (10)0.0072 (10)0.0029 (10)
C90.0223 (16)0.0254 (14)0.0259 (15)0.0028 (11)0.0025 (12)0.0038 (11)
S10.0411 (5)0.0419 (5)0.0279 (4)0.0053 (4)0.0071 (3)0.0087 (3)
N40.0242 (14)0.0281 (12)0.0260 (13)0.0050 (10)0.0048 (10)0.0026 (10)
C100.0208 (16)0.0257 (14)0.0258 (15)0.0011 (11)0.0024 (11)0.0032 (11)
C110.0240 (17)0.0273 (15)0.0297 (16)0.0001 (12)0.0003 (12)0.0007 (12)
C120.0236 (18)0.0298 (16)0.051 (2)0.0014 (12)0.0024 (14)0.0018 (14)
C130.0224 (18)0.0391 (18)0.051 (2)0.0013 (13)0.0071 (15)0.0145 (15)
C140.031 (2)0.062 (2)0.0303 (18)0.0024 (16)0.0070 (14)0.0084 (16)
C150.0253 (18)0.053 (2)0.0278 (17)0.0086 (15)0.0007 (13)0.0007 (14)
Geometric parameters (Å, º) top
N1—C11.355 (4)N3—C91.379 (4)
N1—C81.405 (4)N3—H30.8800
N1—H10.8800C9—N41.347 (4)
C1—O11.238 (4)C9—S11.660 (3)
C1—C21.507 (4)N4—C101.421 (4)
C2—N21.292 (4)N4—H4A0.8800
C2—C31.456 (4)C10—C111.388 (4)
C3—C41.382 (5)C10—C151.391 (4)
C3—C81.408 (4)C11—C121.397 (5)
C4—C51.387 (5)C11—H110.9500
C4—H40.9500C12—C131.378 (5)
C5—C61.387 (5)C12—H120.9500
C5—Br11.899 (4)C13—C141.375 (5)
C6—C71.390 (5)C13—H130.9500
C6—H60.9500C14—C151.386 (5)
C7—C81.380 (5)C14—H140.9500
C7—H70.9500C15—H150.9500
N2—N31.349 (4)
C1—N1—C8111.4 (3)N2—N3—C9121.1 (2)
C1—N1—H1124.3N2—N3—H3119.4
C8—N1—H1124.3C9—N3—H3119.4
O1—C1—N1127.1 (3)N4—C9—N3113.3 (3)
O1—C1—C2126.5 (3)N4—C9—S1129.7 (2)
N1—C1—C2106.3 (3)N3—C9—S1117.0 (2)
N2—C2—C3126.3 (3)C9—N4—C10131.0 (3)
N2—C2—C1127.5 (3)C9—N4—H4A114.5
C3—C2—C1106.2 (3)C10—N4—H4A114.5
C4—C3—C8120.4 (3)C11—C10—C15119.5 (3)
C4—C3—C2133.0 (3)C11—C10—N4124.0 (3)
C8—C3—C2106.6 (3)C15—C10—N4116.4 (3)
C3—C4—C5117.4 (3)C10—C11—C12119.2 (3)
C3—C4—H4121.3C10—C11—H11120.4
C5—C4—H4121.3C12—C11—H11120.4
C6—C5—C4122.3 (3)C13—C12—C11121.1 (3)
C6—C5—Br1118.9 (3)C13—C12—H12119.5
C4—C5—Br1118.6 (3)C11—C12—H12119.5
C5—C6—C7120.5 (3)C14—C13—C12119.3 (3)
C5—C6—H6119.7C14—C13—H13120.3
C7—C6—H6119.7C12—C13—H13120.3
C8—C7—C6117.5 (3)C13—C14—C15120.6 (3)
C8—C7—H7121.2C13—C14—H14119.7
C6—C7—H7121.2C15—C14—H14119.7
C7—C8—N1128.8 (3)C14—C15—C10120.2 (3)
C7—C8—C3121.8 (3)C14—C15—H15119.9
N1—C8—C3109.4 (3)C10—C15—H15119.9
C2—N2—N3117.5 (3)
C8—N1—C1—O1177.1 (3)C4—C3—C8—C71.0 (5)
C8—N1—C1—C22.2 (3)C2—C3—C8—C7179.0 (3)
O1—C1—C2—N21.1 (5)C4—C3—C8—N1179.2 (3)
N1—C1—C2—N2179.6 (3)C2—C3—C8—N11.2 (3)
O1—C1—C2—C3177.9 (3)C3—C2—N2—N3178.6 (3)
N1—C1—C2—C31.5 (3)C1—C2—N2—N30.2 (4)
N2—C2—C3—C41.5 (5)C2—N2—N3—C9173.3 (3)
C1—C2—C3—C4177.5 (3)N2—N3—C9—N46.0 (4)
N2—C2—C3—C8179.2 (3)N2—N3—C9—S1173.5 (2)
C1—C2—C3—C80.2 (3)N3—C9—N4—C10177.3 (3)
C8—C3—C4—C50.2 (5)S1—C9—N4—C102.2 (5)
C2—C3—C4—C5177.6 (3)C9—N4—C10—C1121.9 (5)
C3—C4—C5—C60.3 (5)C9—N4—C10—C15161.0 (3)
C3—C4—C5—Br1176.8 (2)C15—C10—C11—C120.6 (4)
C4—C5—C6—C70.1 (6)N4—C10—C11—C12177.7 (3)
Br1—C5—C6—C7176.6 (3)C10—C11—C12—C130.3 (5)
C5—C6—C7—C80.6 (5)C11—C12—C13—C140.2 (5)
C6—C7—C8—N1179.0 (3)C12—C13—C14—C150.4 (5)
C6—C7—C8—C31.2 (5)C13—C14—C15—C100.1 (6)
C1—N1—C8—C7178.0 (3)C11—C10—C15—C140.4 (5)
C1—N1—C8—C32.2 (3)N4—C10—C15—C14177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.002.858 (3)166
N3—H3···O10.882.072.762 (3)135
N4—H4A···N20.882.162.613 (4)112
Symmetry code: (i) x, y+1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.002.858 (3)165.6
N3—H3···O10.882.072.762 (3)134.8
N4—H4A···N20.882.162.613 (4)111.8
Symmetry code: (i) x, y+1, z+3.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities. We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029–1 and PRONEX-CNPq-FAPERGS projects. KCTB thanks FAPEAM for the award of a scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationCampaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.  CrossRef
First citationChiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527–3530.  Web of Science CrossRef PubMed CAS
First citationPederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1337-o1338
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds