

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{2-[2,2-Bis(4,4-dimethyl-4,5-dihydro-1,3oxazol-2-yl- κN)propyl]pyridine}dichloridoiron(II)

Giuseppina Roviello,^a* Angela Tuzi,^b Carmine Capacchione,^c Stefano Milione^c and Claudio Ferone^a

^aDipartimento di Ingegneria, Università di Napoli 'Parthenope', Centro Direzionale di Napoli, Isola C4, 80143 Napoli, Italy, ^bDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and ^cDipartimento di Chimica e Biologia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy Correspondence e-mail: giuseppina.roviello@uniparthenope.it

Received 25 June 2013; accepted 30 June 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.083; data-to-parameter ratio = 19.1.

The title compound, [FeCl₂(C₁₈H₂₅N₃O₂)], has a distorted tetrahedral Cl₂N₂ coordination of the Fe^{II} atom as a result of the constraints imposed by the 2-[2,2-bis(4,4-dimethyl-4,5dihydro-1,3-oxazol-2-yl)propyl]pyridine ligand. The pyridine ring is almost perpendicular to the six-membered chelated ring containing the metal atom [dihedral angle between their mean planes = $88.5 (1)^{\circ}$].

Related literature

For the analogous bis(oxazoline)iron(II) complex, see: Ferro et al. (2007). For active catalysts used in atom-transfer radical polymerization (ATRP) reactions, see: Matyjaszewski & Xia (2001); Kamigaito et al. (2001); De Roma et al. (2011); Ferro et al. (2009). For similar salicylaldiminato complexes, see: O'Reilly et al. (2003). For structural data on metal complexes, see: Li, Lamberti, Mazzeo et al. (2012); Li, Lamberti, Roviello et al. (2012); Busico et al. (2006); D'Auria et al. (2012). For Nrich aromatic heterocycles, see: Carella et al. (2012), Roviello et al. (2012); Milione & Bertolasi (2011).

Experimental

Crystal data

[FeCl ₂ (C ₁₈ H ₂₅ N ₃ O ₂)]	
$M_r = 442.16$	
Monoclinic, $P2_1/c$	
a = 10.102 (2) Å	
b = 13.925 (3) Å	
c = 14.764 (2) Å	
$\beta = 105.27 \ (1)^{\circ}$	

Data collection

Bruker-Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.820, \ T_{\max} = 0.903$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.083$ S = 1.014578 reflections

V = 2003.5 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.04 \text{ mm}^{-1}$ T = 173 K $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$

```
16483 measured reflections
4578 independent reflections
3033 reflections with I > 2\sigma(I)
R_{\rm int} = 0.054
```

240 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors thank the Centro Interdipartimentale di Metodologie Chimico-Fisiche, Università degli Studi di Napoli "Federico II" for X-ray facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2121).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Busico, V., Cipullo, R., Pellecchia, R., Ronca, S., Roviello, G. & Talarico, G. (2006). Proc. Natl. Acad. Sci. USA. 103, 15321-15326.
- Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, G. (2012). Dyes Pigments, 95, 116-125.
- D'Auria, I., Lamberti, M., Mazzeo, M., Milione, S., Roviello, G. & Pellecchia, C. (2012). Chem. Eur. J. 18, 2349-2360.
- De Roma, A., Yang, H.-J., Milione, S., Capacchione, C., Roviello, G. & Grassi, A. (2011). Inorg. Chem. Commun. 14, 542-544.
- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferro, R., Milione, S., Bertolasi, V., Capacchione, C. & Grassi, A. (2007). Macromolecules, 40, 8544-8546.
- Ferro, R., Milione, S., Caruso, T. & Grassi, A. (2009). J. Mol. Catal. A: Chemical 307, 128-133.
- Kamigaito, M., Ando, T. & Sawamoto, M. (2001). Chem. Rev. 101, 3689-3745. Li, G., Lamberti, M., Mazzeo, M., Pappalardo, D., Roviello, G. & Pellecchia, C.
- (2012). Organometallics 31, 1180-1188. Li, G., Lamberti, M., Roviello, G. & Pellecchia, C. (2012). Organometallics 31,
- 6772-6778
- Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.

Milione, S. & Bertolasi, V. (2011). Tetrahedron Lett. 52, 3570-3574.

Nonius (1999). *COLLECT*. Nonius BV, Delft, The Netherlands. O'Reilly, R. K., Gibson, V. C., White, A. J. P. & Williams, D. J. (2003). *J. Am.*

Chem. Soc. 125, 8450-8451.

Roviello, G. N., Roviello, G., Musumeci, D., Bucci, E. M. & Pedone, C. (2012). Amino Acids 43, 1615-1623. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m433-m434 [doi:10.1107/S1600536813018047]

{2-[2,2-Bis(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl-κN)propyl]pyridine}-dichloridoiron(II)

Giuseppina Roviello, Angela Tuzi, Carmine Capacchione, Stefano Milione and Claudio Ferone

S1. Comment

Metal complexes containing bis(oxazoline) ligands have been widely investigated in the field of homogeneous and asymmetric catalysis. This type of ligands could stabilize the pseudotetrahedral coordination environment of iron(II) affording to efficient ATRP catalyst. The complex Fe(box-py)Cl₂ is analogous to Fe(box)Cl₂, described in the literature (Ferro *et al.*, 2007) and has been investigated in order to obtaining an improved understanding of the factors influencing efficient ATRP catalysis in iron-based systems. The title compound Fe(box-py)Cl₂ (box-py = 2-[2,2-Bis-(4,4-di-methyl-4,5-dihydro-oxazol-2-yl)-propyl]-pyridine), C₁₈H₂₅Cl₂Fe₁N₃O₂, has been used as catalyst in the framework of still not published studies on atom transfer radical polymerization (ATRP) of styrene and methylmethacrylate. The molecular structure of Fe(box-py)Cl₂ shows a distorted tetrahedral geometry, due to the constraints imposed by the ligand (N1—Fe1—N3 = 88.85 (7)°; C11—Fe1—Cl2 = 113.81 (3)°). The Fe—N and Fe—Cl bond distances are similar to that found for Fe(box)Cl₂ and for similar saliclylaldiminato complex (O'Reilly *et al.*, 2003). Finally, the heteroaromatic ring is almost perpendicular to the six-membered chelated ring (angle between their mean planes is equal to 88.5 (1)°) and shows the nitrogen atom pointing towards the coordination environment of the iron.

S2. Experimental

 $Fe(box-py)Cl_2$ was obtained by the reaction of $FeCl_2$ with the ligand. Details for the synthesis will be reported in forthcoming work. Prismatic yellow crystals of the title complex were obtained by slow evaporation of a methylene chloride solution at room temperature.

S3. Refinement

All the H atoms were generated stereochemically and refined by the riding model with C–H in the range 0.95 Å–0.99 Å and $U_{iso}(H)=1.2U_{eq}(C)$; (1.5 for H atoms of methyl groups).

Figure 1

ORTEP view of the title compound. Thermal ellipsoids are drawn at 30% probability level.

{2-[2,2-Bis(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl-κN)propyl]pyridine}dichloridoiron(II)

Crystal data	
$[FeCl_{2}(C_{18}H_{25}N_{3}O_{2})]$ $M_{r} = 442.16$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 10.102 (2) \text{ Å}$ $b = 13.925 (3) \text{ Å}$ $c = 14.764 (2) \text{ Å}$ $\beta = 105.27 (1)^{\circ}$ $V = 2003.5 (6) \text{ Å}^{3}$ $Z = 4$	F(000) = 920 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 186 reflections $\theta = 3.3-21.8^{\circ}$ $\mu = 1.04 \text{ mm}^{-1}$ T = 173 K Prism, yellow $0.20 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Bruker–Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm ⁻¹ CCD rotation images, thick slices scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.820$, $T_{max} = 0.903$ 16483 measured reflections 4578 independent reflections 3033 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$

$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$	$k = -17 \rightarrow 17$
$h = -12 \rightarrow 13$	$l = -17 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
4578 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 1.0658P]$
240 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.89069 (4)	0.34069 (2)	0.30170 (2)	0.01876 (10)	
Cl1	0.87074 (7)	0.33484 (5)	0.14547 (4)	0.03170 (17)	
C12	1.10937 (7)	0.33479 (5)	0.39080 (5)	0.03539 (17)	
01	0.58286 (18)	0.18564 (11)	0.38732 (12)	0.0238 (4)	
O2	0.59661 (18)	0.52345 (11)	0.36945 (12)	0.0245 (4)	
N1	0.7675 (2)	0.24265 (13)	0.34819 (13)	0.0172 (4)	
N3	0.7766 (2)	0.45103 (13)	0.33782 (13)	0.0177 (4)	
N2	0.5051 (2)	0.35734 (15)	0.19970 (14)	0.0257 (5)	
C1	0.7779 (3)	0.13552 (16)	0.34031 (16)	0.0193 (5)	
C2	0.6654 (3)	0.10073 (17)	0.38508 (19)	0.0267 (6)	
H2A	0.6096	0.0494	0.3468	0.027*	
H2B	0.7059	0.0759	0.4493	0.027*	
C3	0.6578 (3)	0.26111 (16)	0.37190 (16)	0.0177 (5)	
C4	0.6652 (3)	0.44283 (16)	0.36183 (15)	0.0169 (5)	
C5	0.6871 (3)	0.60246 (17)	0.36051 (19)	0.0268 (6)	
H5A	0.7304	0.6313	0.4225	0.027*	
H5B	0.6359	0.6529	0.3183	0.027*	
C6	0.7948 (3)	0.55571 (17)	0.31880 (18)	0.0244 (6)	
C7	0.7456 (3)	0.11024 (19)	0.23679 (17)	0.0309 (6)	
H7A	0.6525	0.1318	0.2052	0.031*	
H7B	0.7518	0.0405	0.2298	0.031*	
H7C	0.8116	0.1421	0.2086	0.031*	
C8	0.9184 (3)	0.10127 (19)	0.3938 (2)	0.0331 (7)	

H8B	0.9881	0.1317	0.3680	0.033*
H8A	0.9237	0.0314	0.3878	0.033*
H8C	0.9348	0.1185	0.4602	0.033*
C9	0.7624 (3)	0.57103 (19)	0.21363 (19)	0.0373 (7)
H9B	0.8259	0.5331	0.1880	0.037*
H9C	0.7726	0.6392	0.2005	0.037*
H9A	0.6680	0.5507	0.1844	0.037*
C10	0.9397 (3)	0.5868 (2)	0.3683 (2)	0.0381 (7)
H10C	0.9567	0.5757	0.4359	0.038*
H10B	0.9506	0.6553	0.3568	0.038*
H10A	1.0053	0.5496	0.3441	0.038*
C11	0.6263 (3)	0.36275 (18)	0.49971 (16)	0.0267 (6)
H11A	0.5805	0.3094	0.5225	0.027*
H11B	0.5905	0.4238	0.5163	0.027*
H11C	0.7253	0.3594	0.5287	0.027*
C12	0.4431 (3)	0.35778 (17)	0.34699 (16)	0.0213 (5)
H12B	0.4009	0.3028	0.3715	0.021*
H12A	0.4052	0.4174	0.3667	0.021*
C13	0.5987 (2)	0.35583 (16)	0.39150 (15)	0.0177 (5)
C14	0.4740 (3)	0.35449 (17)	0.10478 (16)	0.0253 (6)
H14	0.5460	0.3588	0.0745	0.025*
C15	0.3403 (3)	0.34549 (18)	0.05079 (18)	0.0332 (7)
H15	0.3206	0.3424	-0.0157	0.033*
C16	0.2350 (3)	0.34100 (19)	0.09531 (19)	0.0355 (7)
H16	0.1424	0.3349	0.0593	0.035*
C17	0.2649 (3)	0.34528 (18)	0.18914 (18)	0.0263 (6)
H17	0.1937	0.3430	0.2202	0.026*
C18	0.4028 (3)	0.35314 (16)	0.24126 (16)	0.0225 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0160 (2)	0.02093 (18)	0.02094 (18)	0.00010 (16)	0.00769 (14)	0.00049 (15)
Cl1	0.0378 (4)	0.0372 (4)	0.0234 (3)	0.0015 (3)	0.0140 (3)	0.0002 (3)
C12	0.0185 (4)	0.0517 (4)	0.0342 (3)	0.0017 (3)	0.0038 (3)	0.0017 (3)
O1	0.0232 (11)	0.0157 (9)	0.0363 (10)	-0.0017 (7)	0.0145 (8)	0.0011 (7)
O2	0.0225 (11)	0.0166 (9)	0.0380 (10)	0.0018 (7)	0.0141 (8)	0.0010 (8)
N1	0.0174 (12)	0.0160 (10)	0.0184 (10)	0.0008 (8)	0.0048 (9)	-0.0005 (8)
N3	0.0167 (12)	0.0157 (10)	0.0215 (10)	-0.0015 (8)	0.0063 (9)	0.0002 (8)
N2	0.0259 (13)	0.0276 (12)	0.0242 (11)	0.0005 (10)	0.0076 (9)	-0.0008 (9)
C1	0.0208 (15)	0.0156 (12)	0.0207 (12)	0.0002 (10)	0.0045 (10)	-0.0012 (10)
C2	0.0315 (17)	0.0166 (13)	0.0353 (15)	-0.0001 (11)	0.0148 (12)	0.0009 (11)
C3	0.0171 (14)	0.0187 (12)	0.0166 (12)	-0.0017 (10)	0.0033 (10)	0.0024 (10)
C4	0.0181 (14)	0.0161 (12)	0.0158 (11)	0.0008 (10)	0.0033 (10)	-0.0013 (10)
C5	0.0275 (17)	0.0151 (13)	0.0398 (15)	-0.0049 (11)	0.0123 (13)	-0.0007 (11)
C6	0.0264 (16)	0.0152 (13)	0.0338 (14)	-0.0021 (11)	0.0118 (12)	0.0006 (11)
C7	0.0393 (19)	0.0257 (14)	0.0288 (14)	-0.0030 (13)	0.0112 (13)	-0.0042 (12)
C8	0.0264 (17)	0.0239 (14)	0.0455 (17)	0.0023 (12)	0.0033 (13)	-0.0018 (13)

supporting information

С9	0.054 (2)	0.0259 (15)	0.0365 (16)	0.0012 (14)	0.0201 (15)	0.0082 (13)
C10	0.0278 (18)	0.0258 (15)	0.062 (2)	-0.0077 (13)	0.0142 (15)	-0.0048 (14)
C11	0.0331 (17)	0.0281 (15)	0.0203 (12)	0.0014 (12)	0.0098 (11)	0.0004 (11)
C12	0.0181 (14)	0.0210 (13)	0.0257 (13)	-0.0014 (10)	0.0076 (10)	0.0008 (11)
C13	0.0174 (13)	0.0191 (12)	0.0186 (11)	0.0002 (10)	0.0083 (10)	-0.0001 (10)
C14	0.0310 (16)	0.0229 (13)	0.0224 (13)	0.0020 (11)	0.0078 (11)	-0.0033 (11)
C15	0.052 (2)	0.0222 (13)	0.0200 (13)	0.0049 (14)	-0.0001 (12)	-0.0018 (12)
C16	0.0263 (16)	0.0253 (14)	0.0426 (16)	0.0021 (13)	-0.0124 (13)	-0.0020 (13)
C17	0.0216 (15)	0.0190 (13)	0.0386 (15)	0.0014 (11)	0.0082 (12)	-0.0056 (12)
C18	0.0235 (15)	0.0163 (12)	0.0268 (13)	0.0020 (11)	0.0052 (11)	-0.0004 (10)

Geometric parameters (Å, °)

Fe1—N1	2.0821 (19)	С7—Н7В	0.9800
Fe1—N3	2.073 (2)	С7—Н7С	0.9800
Fe1—Cl1	2.2633 (7)	C8—H8B	0.9800
Fe1—Cl2	2.2552 (9)	C8—H8A	0.9800
O1—C3	1.349 (3)	C8—H8C	0.9800
O1—C2	1.453 (3)	С9—Н9В	0.9800
O2—C4	1.340 (3)	С9—Н9С	0.9800
O2—C5	1.458 (3)	С9—Н9А	0.9800
N1—C3	1.272 (3)	C10—H10C	0.9800
N1—C1	1.502 (3)	C10—H10B	0.9800
N3—C4	1.271 (3)	C10—H10A	0.9800
N3—C6	1.505 (3)	C11—C13	1.551 (3)
N2—C18	1.335 (3)	C11—H11A	0.9800
N2—C14	1.354 (3)	C11—H11B	0.9800
C1—C8	1.508 (4)	C11—H11C	0.9800
C1—C7	1.518 (3)	C12—C18	1.507 (3)
C1—C2	1.536 (3)	C12—C13	1.535 (3)
C2—H2A	0.9900	C12—H12B	0.9900
C2—H2B	0.9900	C12—H12A	0.9900
C3—C13	1.507 (3)	C14—C15	1.381 (4)
C4—C13	1.506 (3)	C14—H14	0.9500
C5—C6	1.530 (3)	C15—C16	1.392 (4)
C5—H5A	0.9900	С15—Н15	0.9500
С5—Н5В	0.9900	C16—C17	1.339 (4)
С6—С9	1.515 (4)	C16—H16	0.9500
C6—C10	1.517 (4)	C17—C18	1.408 (4)
С7—Н7А	0.9800	С17—Н17	0.9500
N3—Fe1—N1	88.85 (7)	C1—C8—H8B	109.5
N3—Fe1—Cl2	113.73 (6)	C1—C8—H8A	109.5
N1—Fe1—Cl2	111.27 (6)	H8B—C8—H8A	109.5
N3—Fe1—Cl1	112.50 (6)	C1—C8—H8C	109.5
N1—Fe1—Cl1	114.32 (6)	H8B—C8—H8C	109.5
Cl2—Fe1—Cl1	113.81 (3)	Н8А—С8—Н8С	109.5
C3—O1—C2	106.19 (18)	С6—С9—Н9В	109.5

C4—O2—C5	105.92 (18)	С6—С9—Н9С	109.5
C3—N1—C1	107.81 (19)	Н9В—С9—Н9С	109.5
C3—N1—Fe1	126.70 (16)	С6—С9—Н9А	109.5
C1—N1—Fe1	124.42 (15)	Н9В—С9—Н9А	109.5
C4—N3—C6	107.4 (2)	Н9С—С9—Н9А	109.5
C4—N3—Fe1	126 74 (16)	C6-C10-H10C	109.5
C6-N3-Fe1	124 51 (15)	C6-C10-H10B	109.5
$C_{18} N_{2} C_{14}$	118.6(2)	H10C-C10-H10B	109.5
N1-C1-C8	110.0(2)	C6-C10-H10A	109.5
N1 - C1 - C7	107.91(19)	$H_{10}C_{}C_{10}$	109.5
C_{8} C_{1} C_{7}	107.91(19) 112.1(2)	H10B-C10-H10A	109.5
$N_1 - C_1 - C_2$	112.1(2) 101.83(18)	C13_C11_H11A	109.5
C_{8} C_{1} C_{2}	101.03(10) 112.1(2)	C13 C11 H11B	109.5
C_{7} C_{1} C_{2}	112.1(2) 111.9(2)		109.5
$C_{1} = C_{1} = C_{2}$	111.9(2) 104.22(18)		109.5
01 - 02 - 01	104.33 (18)		109.5
C1 - C2 - H2A	110.9	HIIA-CII-HIIC	109.5
CI = C2 = H2R	110.9		109.3
OI - C2 - H2B	110.9	C18 - C12 - C13	114.2 (2)
CI-C2-H2B	110.9	C18—C12—H12B	108.7
H2A—C2—H2B	108.9	C13—C12—H12B	108.7
NI-C3-01	117.2 (2)	C18—C12—H12A	108.7
N1—C3—C13	130.4 (2)	C13—C12—H12A	108.7
01	112.4 (2)	H12B—C12—H12A	107.6
N3—C4—O2	117.6 (2)	C4—C13—C3	114.71 (19)
N3—C4—C13	130.5 (2)	C4—C13—C12	110.27 (19)
O2—C4—C13	111.7 (2)	C3—C13—C12	110.26 (19)
O2—C5—C6	104.15 (18)	C4—C13—C11	106.07 (19)
O2—C5—H5A	110.9	C3—C13—C11	106.22 (19)
C6—C5—H5A	110.9	C12—C13—C11	109.02 (19)
O2—C5—H5B	110.9	N2—C14—C15	121.7 (2)
C6—C5—H5B	110.9	N2-C14-H14	119.2
H5A—C5—H5B	108.9	C15—C14—H14	119.2
N3—C6—C9	108.9 (2)	C14—C15—C16	119.0 (2)
N3—C6—C10	109.7 (2)	C14—C15—H15	120.5
C9—C6—C10	111.9 (2)	C16—C15—H15	120.5
N3—C6—C5	101.67 (19)	C17—C16—C15	119.7 (3)
C9—C6—C5	111.6 (2)	C17—C16—H16	120.2
C10—C6—C5	112.5 (2)	C15—C16—H16	120.2
C1—C7—H7A	109.5	C16—C17—C18	119.3 (3)
С1—С7—Н7В	109.5	C16—C17—H17	120.3
H7A—C7—H7B	109.5	C18—C17—H17	120.3
С1—С7—Н7С	109.5	N2—C18—C17	121.8 (2)
H7A—C7—H7C	109.5	N2-C18-C12	116.3 (2)
H7B—C7—H7C	109.5	C17—C18—C12	121.9 (2)
			(
N3—Fe1—N1—C3	9.1 (2)	C4—N3—C6—C9	-105.0(2)
Cl2—Fe1—N1—C3	124.2 (2)	Fe1—N3—C6—C9	62.7 (3)
C11—Fe1—N1—C3	-105.2(2)	C4-N3-C6-C10	132.2 (2)
			(-)

N3—Fe1—N1—C1	175.79 (18)	Fe1—N3—C6—C10	-60.1 (3)
Cl2—Fe1—N1—C1	-69.11 (18)	C4—N3—C6—C5	12.9 (3)
Cl1—Fe1—N1—C1	61.53 (18)	Fe1—N3—C6—C5	-179.43 (15)
N1—Fe1—N3—C4	-9.9 (2)	O2—C5—C6—N3	-17.1 (3)
Cl2—Fe1—N3—C4	-122.71 (19)	O2—C5—C6—C9	98.8 (2)
Cl1—Fe1—N3—C4	106.0 (2)	O2-C5-C6-C10	-134.4 (2)
N1—Fe1—N3—C6	-175.18 (19)	N3—C4—C13—C3	-13.5 (4)
Cl2—Fe1—N3—C6	72.03 (19)	O2—C4—C13—C3	171.6 (2)
Cl1—Fe1—N3—C6	-59.23 (19)	N3—C4—C13—C12	-138.7 (3)
C3—N1—C1—C8	-130.6 (2)	O2—C4—C13—C12	46.5 (2)
Fe1—N1—C1—C8	60.6 (2)	N3-C4-C13-C11	103.4 (3)
C3—N1—C1—C7	106.6 (2)	O2—C4—C13—C11	-71.4 (2)
Fe1—N1—C1—C7	-62.3 (2)	N1—C3—C13—C4	12.4 (4)
C3—N1—C1—C2	-11.4 (3)	O1—C3—C13—C4	-171.2 (2)
Fe1—N1—C1—C2	179.80 (15)	N1—C3—C13—C12	137.6 (3)
C3—O1—C2—C1	-14.9 (2)	O1—C3—C13—C12	-46.0 (2)
N1-C1-C2-O1	15.6 (2)	N1—C3—C13—C11	-104.4 (3)
C8—C1—C2—O1	133.6 (2)	O1—C3—C13—C11	72.0 (2)
C7—C1—C2—O1	-99.4 (2)	C18—C12—C13—C4	63.0 (2)
C1—N1—C3—O1	2.4 (3)	C18—C12—C13—C3	-64.7 (2)
Fe1—N1—C3—O1	170.87 (14)	C18—C12—C13—C11	179.02 (19)
C1—N1—C3—C13	178.6 (2)	C18—N2—C14—C15	-1.3 (4)
Fe1—N1—C3—C13	-12.9 (4)	N2-C14-C15-C16	1.2 (4)
C2-O1-C3-N1	8.5 (3)	C14—C15—C16—C17	-0.1 (4)
C2-O1-C3-C13	-168.4 (2)	C15—C16—C17—C18	-0.7 (4)
C6—N3—C4—O2	-3.3 (3)	C14—N2—C18—C17	0.4 (4)
Fe1—N3—C4—O2	-170.57 (15)	C14—N2—C18—C12	-179.3 (2)
C6—N3—C4—C13	-177.9 (2)	C16—C17—C18—N2	0.6 (4)
Fe1—N3—C4—C13	14.8 (4)	C16—C17—C18—C12	-179.7 (2)
C5—O2—C4—N3	-8.6 (3)	C13—C12—C18—N2	-6.2 (3)
C5—O2—C4—C13	166.98 (19)	C13—C12—C18—C17	174.1 (2)
C4—O2—C5—C6	16.0 (2)		