Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Hydroxyisoquinoline-1,3(2H,4H)dione

Yoshinobu Ishikawa* and Soichiro Matsuo

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 21 June 2013; accepted 18 July 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.089; data-to-parameter ratio = 13.9.

The title molecule, C₉H₇NO₃, exists in the diketo form and the isoquinoline unit is approximately planar (r.m.s. deviation = 0.0158 Å). In the crystal, molecules are linked into inversion dimers through pairs of $O-H \cdots O$ hydrogen bonds and are further assembled into the (100) layers via stacking inter-[centroid–centroid distances = 3.460(3)actions and 3.635 (4) Å].

Related literature

For the biological properties of the title compound, see: Parkes et al. (2003); Hang et al. (2004); Billamboz et al. (2008). For a related structure, see: Miao et al. (1995).

Experimental

Crystal data

C₉H₇NO₃ $M_{\rm m} = 177.16$ Monoclinic, $P2_1/n$ a = 12.336(5) Å b = 8.666 (4) Å c = 7.052 (7) Å $\beta = 104.19~(5)^{\circ}$

V = 730.8 (9) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 100 K $0.50 \times 0.50 \times 0.45~\text{mm}$ Data collection

Rigaku AFC-7R diffractometer $R_{\rm int} = 0.016$ 3873 measured reflections 3 standard reflections every 150 1650 independent reflections reflections 1484 reflections with $F^2 > 2\sigma(F^2)$ intensity decay: -0.5%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	119 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
1650 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H5\cdots O1^i$	0.84	1.91	2.7056 (17)	158
Symmetry code: (i)	-x + 1, -y + 1	, -z + 2.		

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The authors acknowledge the University of Shizuoka for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2583).

References

- Billamboz, M., Bailly, F., Barreca, M. L., De Luca, L., Mouscadet, J. F., Calmels, C., Andréola, M. L., Witvrouw, M., Christ, F., Debyser, Z. & Cotelle, P. (2008). J. Med. Chem. 51, 7717-7730.
- Hang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., Parkes, K. E., Cammack, N., Martin, J. A. & Klumpp, K. (2004). Biochem. Biophys. Res. Commun. 317, 321-329.
- Miao, F.-M., Wang, J.-L. & Miao, X.-S. (1995). Acta Cryst. C51, 712-713.
- Parkes, K. E., Ermert, P., Fässler, J., Ives, J., Martin, J. A., Merrett, J. H., Obrecht, D., Williams, G. & Klumpp, K. (2003). J. Med. Chem. 46, 1153-1164.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1312 [doi:10.1107/S1600536813019843]

2-Hydroxyisoquinoline-1,3(2H,4H)-dione

Yoshinobu Ishikawa and Soichiro Matsuo

S1. Comment

The title compound is known to inhibit metalloenzymes such as influenza endonuclease (Parkes *et al.*, 2003), HIV-1 reverse transcriptase RNase H (Hang *et al.*, 2004), and HIV-1 integrase (Billamboz *et al.*, 2008). Here we report the crystal structure of the title compound, which was obtained from the deprotection of 2-benzyloxyiso-quinoline-1,3(2*H*,4*H*)-dione by the use of boron tribromide. The compound exists in keto form and the isoquinoline ring is almost planar (r.m.s. deviation = 0.0158 Å). In the crystal, the molecules link through intermolecular O–H···O hydrogen bonds and stack along the *c* axis, as shown in Figure 2. The distance from plane1 (C7/C8/C9/C11/C12/C13) to plane2 [C4/C6/C7/C8/C10/N3, (1 - *x*, 2 - *y*, 1 - *z*)] is 3.460 (3) Å.

S2. Experimental

The title compound was synthesized according to the literature (Billamboz *et al.*, 2008). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution of the compound at room temperature.

S3. Refinement

The hydrogen atoms of the benzene ring were placed geometrically [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model. The hydrogen atoms of the methylene and N–OH groups were found in a difference Fourier map, and refined with distance constraints [C–H 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$, O–H 0.84 Å, $U_{iso}(H) = 1.2U_{eq}(O)$].

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A crystal packing view of the title compound. Hydrogen bonds are represented as dashed lines.

2-Hydroxyisoquinoline-1,3(2H,4H)-dione

Crystal data	
$C_9H_7NO_3$ $M_r = 177.16$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.336 (5) Å b = 8.666 (4) Å c = 7.052 (7) Å $\beta = 104.19$ (5)°	F(000) = 368.00 $D_x = 1.610 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71069 \mathbf{A} Cell parameters from 25 reflections $\theta = 14.9-17.0^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 K Block orange
$V = 730.8 (9) Å^{3}$ Z = 4 <i>Data collection</i>	$0.50 \times 0.50 \times 0.45 \text{ mm}$
Rigaku AFC-7R diffractometer ω -2 θ scans 3873 measured reflections 1650 independent reflections 1484 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.016$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -16 \rightarrow 15$ $k = -11 \rightarrow 11$ $l = -5 \rightarrow 9$ 3 standard reflections every 150 reflections intensity decay: -0.5%

Refinement

Secondary atom site location: difference Fourier
Hudrogen site leastion; informed from
Hydrogen site location. Interfed from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 0.2377P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.41291 (6)	0.60097 (8)	0.84881 (11)	0.01900 (19)
O2	0.71902 (6)	0.89780 (9)	0.89569 (11)	0.01901 (19)
O5	0.63125 (6)	0.62843 (8)	0.92088 (12)	0.01860 (19)
N3	0.56130 (7)	0.75393 (9)	0.86013 (12)	0.0136 (2)
C4	0.37267 (8)	0.86193 (11)	0.74485 (15)	0.0132 (2)
C6	0.61776 (8)	0.89219 (11)	0.84438 (14)	0.0133 (2)
C7	0.54474 (8)	1.02389 (11)	0.76248 (13)	0.0124 (2)
C8	0.42836 (8)	1.01072 (11)	0.71477 (13)	0.0124 (2)
C9	0.59616 (8)	1.16334 (12)	0.73257 (14)	0.0149 (3)
C10	0.44805 (8)	0.72873 (11)	0.82056 (14)	0.0134 (2)
C11	0.53109 (9)	1.28959 (12)	0.65699 (15)	0.0164 (3)
C12	0.36371 (8)	1.13890 (12)	0.63746 (15)	0.0151 (3)
C13	0.41430 (9)	1.27737 (12)	0.60954 (15)	0.0165 (3)
H4A	0.3253	0.8813	0.8372	0.0158*
H4B	0.3224	0.8312	0.6184	0.0158*
Н5	0.6004	0.5666	0.9829	0.0223*
Н9	0.6754	1.1710	0.7641	0.0179*
H11	0.5655	1.3843	0.6373	0.0197*
H12	0.2845	1.1312	0.6037	0.0182*
H13	0.3696	1.3641	0.5581	0.0198*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0159 (4)	0.0140 (4)	0.0257 (4)	-0.0012 (3)	0.0025 (3)	0.0038 (3)
O2	0.0111 (4)	0.0193 (4)	0.0255 (4)	0.0003 (3)	0.0023 (3)	0.0022 (3)
O5	0.0134 (4)	0.0132 (4)	0.0283 (5)	0.0044 (3)	0.0034 (3)	0.0058 (3)
N3	0.0114 (4)	0.0112 (4)	0.0173 (4)	0.0027 (3)	0.0014 (3)	0.0018 (3)
C4	0.0104 (5)	0.0130 (5)	0.0158 (5)	0.0001 (4)	0.0028 (4)	0.0006 (4)
C6	0.0126 (5)	0.0142 (5)	0.0132 (5)	-0.0007 (4)	0.0032 (4)	-0.0011 (4)
C4 C6	0.0104 (5) 0.0126 (5)	0.0130 (5) 0.0142 (5)	0.0158 (5) 0.0132 (5)	0.0001 (4) -0.0007 (4)	0.0028 (4) 0.0032 (4)	0.0006 (4) -0.0011 (4)

supporting information

C7	0.0133 (5)	0.0128 (5)	0.0112 (5)	0.0003 (4)	0.0030 (4)	-0.0012 (4)
C8	0.0132 (5)	0.0127 (5)	0.0116 (5)	0.0001 (4)	0.0039 (4)	-0.0012 (4)
C9	0.0140 (5)	0.0162 (5)	0.0146 (5)	-0.0028 (4)	0.0036 (4)	-0.0015 (4)
C10	0.0131 (5)	0.0144 (5)	0.0124 (5)	-0.0007 (4)	0.0027 (4)	-0.0011 (4)
C11	0.0198 (5)	0.0125 (5)	0.0176 (5)	-0.0029 (4)	0.0059 (4)	-0.0012 (4)
C12	0.0135 (5)	0.0154 (5)	0.0168 (5)	0.0019 (4)	0.0040 (4)	-0.0006 (4)
C13	0.0187 (5)	0.0129 (5)	0.0180 (5)	0.0030 (4)	0.0045 (4)	0.0004 (4)

Geometric parameters (Å, °)

O1—C10	1.2230 (13)	C9—C11	1.3841 (15)
O2—C6	1.2133 (13)	C11—C13	1.4009 (17)
O5—N3	1.3891 (12)	C12—C13	1.3887 (16)
N3—C6	1.4039 (14)	O5—H5	0.840
N3—C10	1.3734 (14)	C4—H4A	0.990
C4—C8	1.5003 (15)	C4—H4B	0.990
C4—C10	1.4962 (15)	С9—Н9	0.950
C6—C7	1.4807 (14)	C11—H11	0.950
C7—C8	1.3966 (15)	C12—H12	0.950
С7—С9	1.4046 (16)	C13—H13	0.950
C8—C12	1.3978 (15)		
O5—N3—C6	114.20 (9)	C9—C11—C13	119.84 (10)
O5—N3—C10	117.53 (8)	C8—C12—C13	120.58 (10)
C6—N3—C10	128.27 (8)	C11—C13—C12	120.20 (10)
C8—C4—C10	116.58 (9)	N3—O5—H5	109.471
O2—C6—N3	120.34 (9)	C8—C4—H4A	108.149
O2—C6—C7	124.67 (10)	C8—C4—H4B	108.145
N3—C6—C7	114.99 (9)	C10—C4—H4A	108.149
C6—C7—C8	121.47 (9)	C10—C4—H4B	108.153
С6—С7—С9	117.89 (9)	H4A—C4—H4B	107.318
C8—C7—C9	120.63 (9)	С7—С9—Н9	120.087
C4—C8—C7	121.03 (9)	С11—С9—Н9	120.091
C4—C8—C12	120.06 (9)	C9—C11—H11	120.082
C7—C8—C12	118.92 (10)	C13—C11—H11	120.074
C7—C9—C11	119.82 (10)	C8—C12—H12	119.713
O1—C10—N3	119.63 (9)	C13—C12—H12	119.710
O1—C10—C4	122.85 (10)	C11—C13—H13	119.902
N3—C10—C4	117.52 (9)	C12—C13—H13	119.895
H5—O5—N3—C6	150.2	N3—C6—C7—C9	-176.51 (8)
H5—O5—N3—C10	-30.7	C6—C7—C8—C4	0.00 (14)
O5—N3—C6—O2	-5.29 (13)	C6—C7—C8—C12	-179.84 (8)
O5—N3—C6—C7	174.61 (7)	C6—C7—C9—C11	-179.76 (8)
O5—N3—C10—O1	3.59 (14)	С6—С7—С9—Н9	0.2
O5—N3—C10—C4	-176.79 (8)	C8—C7—C9—C11	0.67 (14)
C6-N3-C10-O1	-177.53 (9)	С8—С7—С9—Н9	-179.3
C6—N3—C10—C4	2.09 (15)	C9—C7—C8—C4	179.56 (8)

C10—N3—C6—O2	175.80 (9)	C9—C7—C8—C12	-0.28 (14)
C10—N3—C6—C7	-4.30 (15)	C4—C8—C12—C13	179.79 (9)
C8—C4—C10—O1	-179.05 (9)	C4—C8—C12—H12	-0.2
C8—C4—C10—N3	1.35 (13)	C7—C8—C12—C13	-0.36 (15)
C10-C4-C8-C7	-2.26 (14)	C7—C8—C12—H12	179.6
C10-C4-C8-C12	177.58 (8)	C7—C9—C11—C13	-0.41 (15)
H4A—C4—C8—C7	119.8	C7—C9—C11—H11	179.6
H4A—C4—C8—C12	-60.4	H9—C9—C11—C13	179.6
H4B—C4—C8—C7	-124.3	H9—C9—C11—H11	-0.4
H4B-C4-C8-C12	55.5	C9—C11—C13—C12	-0.23 (16)
H4A—C4—C10—O1	58.9	C9-C11-C13-H13	179.8
H4A—C4—C10—N3	-120.7	H11—C11—C13—C12	179.8
H4B-C4-C10-O1	-57.0	H11—C11—C13—H13	-0.2
H4B—C4—C10—N3	123.4	C8—C12—C13—C11	0.62 (16)
O2—C6—C7—C8	-177.04 (9)	C8-C12-C13-H13	-179.4
O2—C6—C7—C9	3.39 (15)	H12-C12-C13-C11	-179.4
N3—C6—C7—C8	3.06 (13)	H12—C12—C13—H13	0.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O5—H5…O1 ⁱ	0.84	1.91	2.7056 (17)	158

Symmetry code: (i) -x+1, -y+1, -z+2.