[Journal logo]

Volume 69 
Part 8 
Page o1332  
August 2013  

Received 25 June 2013
Accepted 23 July 2013
Online 27 July 2013

Key indicators
Single-crystal X-ray study
T = 296 K
Mean [sigma](C-C) = 0.003 Å
R = 0.038
wR = 0.113
Data-to-parameter ratio = 13.0
Details
Open access

1-[6-(3,5-Dimethylpyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]guanidin-2-ium perchlorate methanol monosolvate

aSchool of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, People's Republic of China
Correspondence e-mail: donghuhai@qq.com

In the title solvated salt, C8H12N9+·ClO4-·CH3OH, the dihedral angle between the tetrazine and pyrazole rings is 26.05 (7)°. The two N atoms bonded to the 1,2,4,5-tetrazine ring deviate from the plane defined by its four N atoms by 0.234 (2) and 0.186 (2) Å. There is an intramolecular N-H...N hydrogen bond between the protonated guanidine fragment and one of the tetrazine N atoms. In the crystal, two cations and two perchlorate anions are connected via N-H...O hydrogen bonds into centrosymmetric assemblies. These assemblies are further linked into a two-dimensional network parallel to (100) via bifurcated O-H...(N,N) hydrogen bonds formed with the bridging methanol molecules.

Related literature

For 1,2,4,5-tetrazine heterocycles containing strained ring systems, see: Boger & Zhang (1991[Boger, D. L. & Zhang, M. J. (1991). J. Am. Chem. Soc. 113, 4230-4234.]); Chavez et al. (2004[Chavez, D. E., Hiskey, M. A. & Naud, D. L. (2004). Propell. Explos. Pyrotech. 29, 209-215.]); Saikia et al. (2009[Saikia, A., Sivabalan, R., Polke, B. G., Gore, G. M., Singh, A., Subhananda Rao, A. & Sikder, A. K. (2009). J. Hazard. Mater. 170, 306-313.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N9+·ClO4-·CH4O

  • Mr = 365.76

  • Monoclinic, P 21 /c

  • a = 12.7906 (15) Å

  • b = 8.0149 (10) Å

  • c = 16.644 (2) Å

  • [beta] = 108.305 (1)°

  • V = 1619.9 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.28 mm-1

  • T = 296 K

  • 0.38 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.948

  • 7710 measured reflections

  • 2875 independent reflections

  • 2426 reflections with I > 2[sigma](I)

  • Rint = 0.022

Refinement
  • R[F2 > 2[sigma](F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.06

  • 2875 reflections

  • 222 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.24 e Å-3

  • [Delta][rho]min = -0.27 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1A...O2i 0.86 2.54 3.101 (3) 124
O5-H5...N9ii 0.82 2.05 2.866 (2) 173
O5-H5...N5ii 0.82 2.50 2.940 (2) 114
N2-H2A...O3iii 0.86 2.50 3.251 (3) 146
N2-H2A...O2iii 0.86 2.37 3.118 (3) 146
N1-H1A...O2iii 0.86 2.37 3.120 (3) 146
N3-H3...O5 0.86 1.90 2.700 (2) 153
N2-H2B...N7 0.86 2.09 2.713 (2) 129
N1-H1B...O5 0.86 2.37 3.085 (3) 140
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2585 ).


Acknowledgements

We thank the Program for New Century Excellent Talents in Universities (No. NCET-12-1047), the National Natural Science Foundation of China (No. 21073141) and the Education Committee Foundation of Shaanxi Province (Nos. 11 J K0564 and 11 J K0582) for generously supporting this study.

References

Boger, D. L. & Zhang, M. J. (1991). J. Am. Chem. Soc. 113, 4230-4234.  [CrossRef] [ChemPort]
Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chavez, D. E., Hiskey, M. A. & Naud, D. L. (2004). Propell. Explos. Pyrotech. 29, 209-215.  [CrossRef] [ChemPort]
Saikia, A., Sivabalan, R., Polke, B. G., Gore, G. M., Singh, A., Subhananda Rao, A. & Sikder, A. K. (2009). J. Hazard. Mater. 170, 306-313.  [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1332  [ doi:10.1107/S1600536813020448 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.