organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[6-(3,5-Di­methyl­pyrazol-1-yl)-1,2,4,5-tetra­zin-3-yl]guanidin-2-ium perchlorate methanol monosolvate

aSchool of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com

(Received 25 June 2013; accepted 23 July 2013; online 27 July 2013)

In the title solvated salt, C8H12N9+·ClO4·CH3OH, the dihedral angle between the tetra­zine and pyrazole rings is 26.05 (7)°. The two N atoms bonded to the 1,2,4,5-tetra­zine ring deviate from the plane defined by its four N atoms by 0.234 (2) and 0.186 (2) Å. There is an intra­molecular N—H⋯N hydrogen bond between the protonated guanidine fragment and one of the tetra­zine N atoms. In the crystal, two cations and two perchlorate anions are connected via N—H⋯O hydrogen bonds into centrosymmetric assemblies. These assemblies are further linked into a two-dimensional network parallel to (100) via bifurcated O—H⋯(N,N) hydrogen bonds formed with the bridging methanol mol­ecules.

Related literature

For 1,2,4,5-tetra­zine heterocycles containing strained ring systems, see: Boger & Zhang (1991[Boger, D. L. & Zhang, M. J. (1991). J. Am. Chem. Soc. 113, 4230-4234.]); Chavez et al. (2004[Chavez, D. E., Hiskey, M. A. & Naud, D. L. (2004). Propell. Explos. Pyrotech. 29, 209-215.]); Saikia et al. (2009[Saikia, A., Sivabalan, R., Polke, B. G., Gore, G. M., Singh, A., Subhananda Rao, A. & Sikder, A. K. (2009). J. Hazard. Mater. 170, 306-313.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N9+·ClO4·CH4O

  • Mr = 365.76

  • Monoclinic, P 21 /c

  • a = 12.7906 (15) Å

  • b = 8.0149 (10) Å

  • c = 16.644 (2) Å

  • β = 108.305 (1)°

  • V = 1619.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.38 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.948

  • 7710 measured reflections

  • 2875 independent reflections

  • 2426 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.06

  • 2875 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.54 3.101 (3) 124
O5—H5⋯N9ii 0.82 2.05 2.866 (2) 173
O5—H5⋯N5ii 0.82 2.50 2.940 (2) 114
N2—H2A⋯O3iii 0.86 2.50 3.251 (3) 146
N2—H2A⋯O2iii 0.86 2.37 3.118 (3) 146
N1—H1A⋯O2iii 0.86 2.37 3.120 (3) 146
N3—H3⋯O5 0.86 1.90 2.700 (2) 153
N2—H2B⋯N7 0.86 2.09 2.713 (2) 129
N1—H1B⋯O5 0.86 2.37 3.085 (3) 140
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocycles with high nitrogen and low carbon content that are free of halogens possess desirable stability. Recently, considerable attention has been paid to 1,2,4,5-tetrazine heterocycles containing strained ring systems (Boger and Zhang, 1991; Chavez et al., 2004; Saikia et al., 2009). This makes them good candidates for energetic materials (propellants or explosives). Heteroatom substituted tetrazine derivatives such as 3,6-diguanidino-1,2,4,5-tetrazine (DGTz) (Chavez et al., 2004) and 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz) (Saikia et al., 2009) are readily accessible from 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine (BT). 3-Guanidyl-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine (GDPTz) also is a derivative of BT and we report here the crystal structure of its perchlorate salt methanol monosolvate..

Related literature top

For 1,2,4,5-tetrazine heterocycles containing strained ring systems, see: Boger & Zhang (1991); Chavez et al. (2004); Saikia et al. (2009).

Experimental top

Methanol (100 ml), guanidinium nitrate (11.8 g,0.098 mol) and sodium methoxide (4.4 g 0.098 mol) were stirred for 45 minutes. 3,6-Bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine (12.4 g, 46 mmol) was added in one portion and stirred at room temperature for 12 h. The dark red slurry, composed mainly of DGTz mixed with a small amount of GDPTz, was filtered and washed with amounts of copious water and transferred to a 500 ml beaker. The solids were suspended in water (200 ml) and 70% perchloric acid (32 ml) was added with stirring; the suspension slowly turned into an orange solution. Orange needles precipitate was gained after a few minutes of stirring. The slurry was heated to re-dissolve the precipitate and cooled to room temperature and then placed in the refrigerator for several hours. The orange needles were collected by filtration, the filtrate was concentrated in vacuo, the solid product was washed with ethanol and purified by recrystallization from methanol to give the pure saffron compound in 4.1% yield. Crystals were obtained from methanol, by slow evaporation at room temperature. Elemental analysis calculated for C9H16N9O5Cl: C 29.56, N 34.47, H 4.41%; found: C 29.19, N 34.10, H 4.60%.

Refinement top

H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.96 Å, N—H distance 0.86 Å, and O—H distance 0.82 Å.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing diagram. Hydrogen bonds are shown with dashed lines.
1-[6-(3,5-Dimethylpyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]guanidin-2-ium perchlorate methanol monosolvate top
Crystal data top
C8H12N9+·ClO4·CH4OF(000) = 760
Mr = 365.76Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3433 reflections
a = 12.7906 (15) Åθ = 2.6–25.8°
b = 8.0149 (10) ŵ = 0.28 mm1
c = 16.644 (2) ÅT = 296 K
β = 108.305 (1)°Block, yellow
V = 1619.9 (3) Å30.38 × 0.28 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2875 independent reflections
Radiation source: fine-focus sealed tube2426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1415
Tmin = 0.902, Tmax = 0.948k = 96
7710 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.5826P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2875 reflectionsΔρmax = 0.24 e Å3
222 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0149 (15)
Crystal data top
C8H12N9+·ClO4·CH4OV = 1619.9 (3) Å3
Mr = 365.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7906 (15) ŵ = 0.28 mm1
b = 8.0149 (10) ÅT = 296 K
c = 16.644 (2) Å0.38 × 0.28 × 0.19 mm
β = 108.305 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2426 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.948Rint = 0.022
7710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2875 reflectionsΔρmin = 0.27 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.71723 (4)0.14781 (6)0.07027 (3)0.0510 (2)
N20.67200 (16)0.7743 (2)0.19606 (13)0.0613 (5)
H2A0.67750.87250.17690.074*
H2B0.72650.73220.23530.074*
N30.56882 (13)0.5343 (2)0.19387 (11)0.0463 (4)
H30.50250.49710.18070.056*
N10.49649 (15)0.7504 (3)0.10588 (13)0.0639 (6)
H1A0.50020.84830.08580.077*
H1B0.43730.69230.08680.077*
N40.61470 (13)0.2743 (2)0.24859 (12)0.0503 (4)
N50.68994 (14)0.1634 (2)0.28457 (12)0.0524 (5)
N60.82827 (13)0.3725 (2)0.31430 (11)0.0510 (4)
N70.75184 (14)0.4852 (2)0.27682 (11)0.0516 (4)
N90.84660 (13)0.0495 (2)0.37776 (10)0.0468 (4)
C50.93968 (17)0.1338 (2)0.40593 (13)0.0473 (5)
C61.02667 (17)0.0472 (3)0.39046 (14)0.0544 (5)
H61.09950.08240.40480.065*
C70.98545 (16)0.0966 (3)0.35103 (13)0.0513 (5)
N80.87506 (13)0.0947 (2)0.34434 (10)0.0445 (4)
O10.69859 (19)0.3153 (2)0.08793 (16)0.0991 (7)
O20.61828 (13)0.0547 (2)0.05927 (12)0.0742 (5)
O30.80093 (16)0.0795 (3)0.13929 (14)0.1041 (7)
O40.74576 (18)0.1425 (3)0.00434 (12)0.0920 (7)
O50.36726 (13)0.4239 (2)0.10212 (12)0.0690 (5)
H50.30850.43690.11140.103*
C10.58130 (17)0.6897 (2)0.16581 (13)0.0455 (5)
C20.65001 (15)0.4300 (2)0.24091 (12)0.0421 (4)
C30.79545 (15)0.2160 (2)0.31182 (12)0.0425 (4)
C40.9443 (2)0.3002 (3)0.44739 (16)0.0669 (7)
H4A0.87690.31920.45980.100*
H4B1.00500.30240.49900.100*
H4C0.95400.38580.41000.100*
C81.0389 (2)0.2301 (4)0.3155 (2)0.0821 (9)
H8A1.04510.32960.34880.123*
H8B0.99500.25280.25820.123*
H8C1.11090.19410.31660.123*
C90.3592 (3)0.2881 (5)0.0482 (3)0.1234 (15)
H9A0.42950.26810.04050.185*
H9B0.30560.31160.00560.185*
H9C0.33710.19100.07250.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0464 (3)0.0461 (3)0.0566 (3)0.0045 (2)0.0103 (2)0.0036 (2)
N20.0621 (12)0.0374 (10)0.0784 (13)0.0025 (9)0.0135 (10)0.0134 (9)
N30.0380 (8)0.0378 (9)0.0616 (10)0.0032 (7)0.0136 (8)0.0093 (8)
N10.0550 (11)0.0606 (12)0.0739 (13)0.0101 (9)0.0171 (9)0.0296 (10)
N40.0410 (9)0.0407 (9)0.0675 (11)0.0020 (7)0.0144 (8)0.0137 (8)
N50.0423 (9)0.0399 (9)0.0713 (12)0.0019 (7)0.0127 (8)0.0140 (8)
N60.0429 (9)0.0379 (9)0.0628 (11)0.0010 (7)0.0033 (8)0.0040 (8)
N70.0481 (10)0.0351 (9)0.0636 (11)0.0008 (7)0.0058 (8)0.0042 (8)
N90.0450 (9)0.0371 (9)0.0537 (10)0.0021 (7)0.0091 (7)0.0080 (7)
C50.0508 (11)0.0380 (11)0.0452 (11)0.0100 (9)0.0039 (9)0.0030 (8)
C60.0427 (11)0.0534 (13)0.0634 (13)0.0130 (10)0.0111 (10)0.0024 (10)
C70.0421 (11)0.0551 (13)0.0572 (12)0.0039 (10)0.0166 (9)0.0007 (10)
N80.0400 (9)0.0385 (9)0.0524 (10)0.0041 (7)0.0109 (7)0.0076 (7)
O10.1156 (17)0.0471 (10)0.152 (2)0.0112 (11)0.0675 (16)0.0110 (12)
O20.0597 (10)0.0659 (11)0.0934 (13)0.0216 (9)0.0188 (9)0.0095 (9)
O30.0709 (12)0.1261 (19)0.0903 (14)0.0117 (13)0.0106 (10)0.0277 (13)
O40.0944 (14)0.1182 (18)0.0745 (12)0.0142 (13)0.0424 (11)0.0052 (12)
O50.0487 (9)0.0724 (11)0.0892 (12)0.0052 (8)0.0265 (8)0.0270 (9)
C10.0468 (11)0.0395 (11)0.0528 (11)0.0085 (9)0.0197 (9)0.0077 (9)
C20.0407 (10)0.0365 (10)0.0489 (11)0.0022 (8)0.0138 (8)0.0040 (8)
C30.0408 (10)0.0387 (10)0.0457 (10)0.0020 (8)0.0104 (8)0.0064 (8)
C40.0700 (15)0.0437 (12)0.0730 (16)0.0112 (11)0.0026 (12)0.0095 (11)
C80.0601 (15)0.0845 (19)0.113 (2)0.0046 (14)0.0429 (15)0.0253 (17)
C90.090 (2)0.142 (3)0.149 (3)0.019 (2)0.053 (2)0.089 (3)
Geometric parameters (Å, º) top
Cl—O41.4007 (19)N9—N81.381 (2)
Cl—O11.410 (2)C5—C61.402 (3)
Cl—O31.4118 (19)C5—C41.494 (3)
Cl—O21.4307 (16)C6—C71.349 (3)
N2—C11.301 (3)C6—H60.9300
N2—H2A0.8600C7—N81.381 (2)
N2—H2B0.8600C7—C81.489 (3)
N3—C11.357 (3)N8—C31.388 (2)
N3—C21.371 (2)O5—C91.394 (3)
N3—H30.8600O5—H50.8200
N1—C11.315 (3)C4—H4A0.9600
N1—H1A0.8600C4—H4B0.9600
N1—H1B0.8600C4—H4C0.9600
N4—N51.309 (2)C8—H8A0.9600
N4—C21.346 (3)C8—H8B0.9600
N5—C31.349 (3)C8—H8C0.9600
N6—C31.320 (3)C9—H9A0.9600
N6—N71.333 (2)C9—H9B0.9600
N7—C21.327 (2)C9—H9C0.9600
N9—C51.320 (2)
O4—Cl—O1108.79 (14)N9—N8—C3119.30 (15)
O4—Cl—O3111.56 (14)C7—N8—C3129.05 (17)
O1—Cl—O3109.53 (16)C9—O5—H5109.5
O4—Cl—O2109.68 (12)N2—C1—N1121.56 (19)
O1—Cl—O2108.81 (12)N2—C1—N3122.16 (19)
O3—Cl—O2108.42 (13)N1—C1—N3116.28 (19)
C1—N2—H2A120.0N7—C2—N4125.26 (17)
C1—N2—H2B120.0N7—C2—N3120.94 (17)
H2A—N2—H2B120.0N4—C2—N3113.76 (16)
C1—N3—C2127.33 (17)N6—C3—N5125.62 (18)
C1—N3—H3116.3N6—C3—N8117.78 (17)
C2—N3—H3116.3N5—C3—N8116.49 (17)
C1—N1—H1A120.0C5—C4—H4A109.5
C1—N1—H1B120.0C5—C4—H4B109.5
H1A—N1—H1B120.0H4A—C4—H4B109.5
N5—N4—C2116.91 (16)C5—C4—H4C109.5
N4—N5—C3117.09 (16)H4A—C4—H4C109.5
C3—N6—N7116.75 (16)H4B—C4—H4C109.5
C2—N7—N6117.18 (16)C7—C8—H8A109.5
C5—N9—N8104.42 (16)C7—C8—H8B109.5
N9—C5—C6111.15 (18)H8A—C8—H8B109.5
N9—C5—C4121.4 (2)C7—C8—H8C109.5
C6—C5—C4127.4 (2)H8A—C8—H8C109.5
C7—C6—C5107.51 (18)H8B—C8—H8C109.5
C7—C6—H6126.2O5—C9—H9A109.5
C5—C6—H6126.2O5—C9—H9B109.5
C6—C7—N8105.28 (19)H9A—C9—H9B109.5
C6—C7—C8130.5 (2)O5—C9—H9C109.5
N8—C7—C8124.1 (2)H9A—C9—H9C109.5
N9—N8—C7111.63 (16)H9B—C9—H9C109.5
C2—N4—N5—C31.1 (3)C2—N3—C1—N1164.5 (2)
C3—N6—N7—C20.3 (3)N6—N7—C2—N49.1 (3)
N8—N9—C5—C60.6 (2)N6—N7—C2—N3173.48 (18)
N8—N9—C5—C4179.98 (19)N5—N4—C2—N79.8 (3)
N9—C5—C6—C70.0 (3)N5—N4—C2—N3172.61 (18)
C4—C5—C6—C7179.3 (2)C1—N3—C2—N711.8 (3)
C5—C6—C7—N80.6 (2)C1—N3—C2—N4170.56 (19)
C5—C6—C7—C8175.8 (3)N7—N6—C3—N59.0 (3)
C5—N9—N8—C71.0 (2)N7—N6—C3—N8174.88 (17)
C5—N9—N8—C3177.43 (17)N4—N5—C3—N68.3 (3)
C6—C7—N8—N91.0 (2)N4—N5—C3—N8175.54 (17)
C8—C7—N8—N9175.7 (2)N9—N8—C3—N6151.36 (18)
C6—C7—N8—C3177.2 (2)C7—N8—C3—N626.8 (3)
C8—C7—N8—C36.0 (4)N9—N8—C3—N525.1 (3)
C2—N3—C1—N215.4 (3)C7—N8—C3—N5156.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.543.101 (3)124
O5—H5···N9ii0.822.052.866 (2)173
O5—H5···N5ii0.822.502.940 (2)114
N2—H2A···O3iii0.862.503.251 (3)146
N2—H2A···O2iii0.862.373.118 (3)146
N1—H1A···O2iii0.862.373.120 (3)146
N3—H3···O50.861.902.700 (2)153
N2—H2B···N70.862.092.713 (2)129
N1—H1B···O50.862.373.085 (3)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.543.101 (3)124
O5—H5···N9ii0.822.052.866 (2)173
O5—H5···N5ii0.822.502.940 (2)114
N2—H2A···O3iii0.862.503.251 (3)146
N2—H2A···O2iii0.862.373.118 (3)146
N1—H1A···O2iii0.862.373.120 (3)146
N3—H3···O50.861.902.700 (2)153
N2—H2B···N70.862.092.713 (2)129
N1—H1B···O50.862.373.085 (3)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

We thank the Program for New Century Excellent Talents in Universities (No. NCET-12–1047), the National Natural Science Foundation of China (No. 21073141) and the Education Committee Foundation of Shaanxi Province (Nos. 11 J K0564 and 11 J K0582) for generously supporting this study.

References

First citationBoger, D. L. & Zhang, M. J. (1991). J. Am. Chem. Soc. 113, 4230–4234.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChavez, D. E., Hiskey, M. A. & Naud, D. L. (2004). Propell. Explos. Pyrotech. 29, 209–215.  Web of Science CrossRef CAS Google Scholar
First citationSaikia, A., Sivabalan, R., Polke, B. G., Gore, G. M., Singh, A., Subhananda Rao, A. & Sikder, A. K. (2009). J. Hazard. Mater. 170, 306–313.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds