organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(10′,10′-Di­methyl-3′-sulfanyl­­idene-4′-aza­tri­cyclo­[5.2.1.01,5]decan-2′­-yl)-10,10-di­methyl-4-aza­tri­cyclo­[5.2.1.01,5]decane-3-thione

aSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia
*Correspondence e-mail: craig.forsyth@sci.monash.edu.au

(Received 4 June 2013; accepted 11 July 2013; online 20 July 2013)

The title compound, C28H40N2O2S2, was obtained as a minor product from an anti-aldol reaction between the corresponding N-propionyl­thiol­actam and benzaldehyde. The asymmetric unit contains one half-molecule, which is completed by inversion symmetry. The molecule displays a nearly eclipsed conformation along the central C—C bond with a C—C—C—C— torsion angle of 20.4 (3)°.

Related literature

For chiral auxiliaries providing control over the sterochemical outcome of chemical transformations, see: Valezquez & Olivo (2002[Valezquez, F. & Olivo, H. F. (2002) Curr. Org. Chem. 6, 303-340.]). For a related synthesis, see: Tamaru et al. (1978[Tamaru, Y., Harada, T. & Yoshida, Z. (1978). J. Am. Chem. Soc. 100, 1923-1925.]).

[Scheme 1]

Experimental

Crystal data
  • C28H40N2O2S2

  • Mr = 500.74

  • Tetragonal, P 41 21 2

  • a = 13.8159 (3) Å

  • c = 13.5221 (6) Å

  • V = 2581.09 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 123 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.98

  • 18157 measured reflections

  • 3814 independent reflections

  • 3601 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.100

  • S = 1.19

  • 3814 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Parsons & Flack (2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.]); Flack x determined using 1367 quotients [(I+)-(I-)]/[(I+)+(I-)]

  • Absolute structure parameter: 0.04 (4)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.]).

Supporting information


Comment top

Chiral auxiliaries provide control over the sterochemical outcome of chemical transformations (Valezquez & Olivo, 2002). During the course of studies on a new type of chiral auxilliary, dimer I was obtained as the unexpected product of a Et2BOTf-promoted anti-aldol reaction between the corresponding N-propionyl thiolactam and benzaldehyde. We postulate that the dimeristion occurs via initial deprotonation of the thiolactam α-carbon to give a thioenolate, followed by oxidative coupling and eventual [3,3]sigmatropic rearrangement of the resultant disulfide (Tamaru et al., 1978). The molecular structure comprises one half of the dimer in the ASU, the other half generated by the symmetry operator #1 - y,-x,1/2 - z. The thiolactam ring is non-planar with an S configuration at C(2) and a nearly eclipsed conformation along the central C—C bond (C(1)—C(2)—C(2)#1-C(1)#1 20.4 (3)°).

Related literature top

Chiral auxiliaries provide control over the sterochemical outcome of chemical transformations, see: Valezquez & Olivo (2002). For a related synthesis, see: Tamaru et al. (1978).

Experimental top

A freshly prepared solution of diethylboron trifluoromethanesulfonate in hexane (from triflic acid (60µL, 0.67 mmol) and triethylborane (0.67µL of a 1M solution in hexane, 0.67 mmol)) was cooled to -5 °C. A solution of N-propionyl-10',10'-dimethyl-4'-azatricyclo[5.2.1.01,5]decan -3'-thione (85 mg, 0.34 mmol) in CH2Cl2 (1.5 mL) was added dropwise, whilst maintaining temperature below 0 °C. After 10 min, i-Pr2NEt (150µL, 0.84 mmol) was added dropwise and the reaction mixture was stirred for 30 min. After cooling to -78 °C, benzaldehyde (110/ml, 1.01 mmol) was added dropwise. The reaction was quenched by dropwise addition of pH 6 phosphate buffer (5 mL) and the resulting mixture was allowed to warm to room tempersture. The organic fraction was extracted into CH2Cl2 (3x5mL)and the combined extracts were dried over MgSO4, filtered and the solvent removed in vacuo. The yellow residue was purified by flash chromatography (3:2 hexane/Et2O) to afford the title compound as yellow prisms. 1H NMR (300 MHz, CDCl3 δ, p.p.m.): 0.91 (s, 6H), 0.93 (s, 6H), 1.11 (t, J 7.2 Hz, 6H), 1.41 (m, 2H), 1.71 (m, 2H), 2.07 (m, 4H), 3.04 (q, J 7.2 Hz, 4H), 3.19 (s, 2H), 4.62 (dd, J 5.4, 7.9 Hz, 2H). 13C NMR (75 MHz, CDCl3 δ, p.p.m.): 8.58, 19.82, 20.63, 26.82, 29.07, 33.75, 38.27, 45.38, 48.62, 55.45, 61.33, 74.22, 175.65, 211.55. IR (ν, cm-1): 2960(s), 1695(s), 1458(w), 1405(w), 1377(m), 1352(m), 1305(m), 1275(m), 1217(m), 1152(m), 1110(m), 1075(m), 1048(m), 958(w), 808(w), 707(w), 626(w). HRMS: Calcd for (C28H41N2O2S2)+ m/z 501.2609; Found 501.2661

Refinement top

All H atoms for the primary molecules were initially located in the difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular diagram of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
2-(10',10'-Dimethyl-3'-sulfanylidene-4'-azatricyclo[5.2.1.01,5]decan-2'-yl)-10,10-dimethyl-4-azatricyclo[5.2.1.01,5]decane-3-thione top
Crystal data top
C28H40N2O2S2Dx = 1.289 Mg m3
Mr = 500.74Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 4395 reflections
a = 13.8159 (3) Åθ = 2.6–29.9°
c = 13.5221 (6) ŵ = 0.24 mm1
V = 2581.09 (16) Å3T = 123 K
Z = 4Prism, colourless
F(000) = 10800.20 × 0.15 × 0.08 mm
Data collection top
Bruker X8 APEX CCD
diffractometer
3814 independent reflections
Radiation source: fine-focus sealed tube3601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
thin slice ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1915
Tmin = 0.94, Tmax = 0.98k = 1819
18157 measured reflectionsl = 1918
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8743P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.26 e Å3
3814 reflectionsΔρmin = 0.30 e Å3
154 parametersAbsolute structure: Parsons & Flack (2004); Flack x determined using 1367 quotients [(I+)-(I-)]/[(I+)+(I-)]
0 restraintsAbsolute structure parameter: 0.04 (4)
Crystal data top
C28H40N2O2S2Z = 4
Mr = 500.74Mo Kα radiation
Tetragonal, P41212µ = 0.24 mm1
a = 13.8159 (3) ÅT = 123 K
c = 13.5221 (6) Å0.20 × 0.15 × 0.08 mm
V = 2581.09 (16) Å3
Data collection top
Bruker X8 APEX CCD
diffractometer
3814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3601 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.98Rint = 0.052
18157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.26 e Å3
S = 1.19Δρmin = 0.30 e Å3
3814 reflectionsAbsolute structure: Parsons & Flack (2004); Flack x determined using 1367 quotients [(I+)-(I-)]/[(I+)+(I-)]
154 parametersAbsolute structure parameter: 0.04 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06533 (5)0.15852 (5)0.37365 (5)0.01864 (15)
O10.06705 (15)0.29052 (14)0.09532 (15)0.0238 (4)
N10.05153 (14)0.17685 (14)0.21226 (16)0.0132 (4)
C10.00988 (17)0.12335 (18)0.28611 (19)0.0129 (5)
C20.04889 (17)0.02031 (17)0.27992 (19)0.0127 (5)
H20.05890.00600.34810.015*
C30.14660 (17)0.03484 (17)0.22943 (18)0.0128 (5)
C40.12967 (17)0.12247 (18)0.16116 (19)0.0145 (5)
H40.10740.10050.09450.017*
C50.23097 (18)0.1709 (2)0.1537 (2)0.0199 (6)
H5A0.25130.17870.08400.024*
H5B0.23180.23480.18680.024*
C60.29552 (18)0.09742 (19)0.2084 (2)0.0188 (5)
H60.36070.12310.22700.023*
C70.2986 (2)0.0036 (2)0.1471 (2)0.0218 (6)
H7A0.35020.04030.17120.026*
H7B0.30980.01770.07630.026*
C80.19577 (19)0.04196 (19)0.1637 (2)0.0186 (5)
H8A0.16080.05040.10040.022*
H8B0.20010.10520.19790.022*
C90.23189 (17)0.0686 (2)0.29719 (19)0.0163 (5)
C100.2748 (2)0.0132 (2)0.3598 (2)0.0230 (6)
H10A0.23050.02850.41420.035*
H10B0.33740.00740.38670.035*
H10C0.28390.07070.31850.035*
C110.21142 (19)0.1521 (2)0.3678 (2)0.0224 (6)
H11A0.17010.12940.42190.034*
H11B0.17850.20430.33200.034*
H11C0.27260.17640.39490.034*
C120.02120 (18)0.26367 (18)0.1666 (2)0.0159 (5)
C130.06707 (19)0.31563 (18)0.2041 (2)0.0184 (5)
H13A0.05600.33670.27310.022*
H13B0.12300.27080.20370.022*
C140.0900 (2)0.4034 (2)0.1403 (2)0.0304 (7)
H14A0.14760.43610.16640.046*
H14B0.10230.38250.07220.046*
H14C0.03500.44810.14130.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0187 (3)0.0188 (3)0.0184 (3)0.0002 (2)0.0045 (3)0.0031 (3)
O10.0213 (10)0.0246 (10)0.0256 (10)0.0043 (8)0.0038 (9)0.0106 (8)
N10.0103 (9)0.0134 (9)0.0158 (10)0.0010 (7)0.0003 (8)0.0006 (8)
C10.0112 (11)0.0143 (11)0.0132 (11)0.0012 (8)0.0024 (9)0.0006 (9)
C20.0121 (11)0.0119 (11)0.0140 (11)0.0005 (8)0.0005 (9)0.0010 (9)
C30.0113 (11)0.0128 (10)0.0144 (12)0.0004 (8)0.0001 (9)0.0020 (9)
C40.0145 (11)0.0152 (11)0.0140 (11)0.0020 (9)0.0019 (9)0.0026 (9)
C50.0139 (11)0.0214 (13)0.0245 (14)0.0010 (10)0.0030 (10)0.0088 (11)
C60.0117 (11)0.0227 (13)0.0219 (14)0.0007 (9)0.0026 (10)0.0064 (11)
C70.0161 (12)0.0245 (14)0.0249 (15)0.0044 (10)0.0058 (11)0.0037 (12)
C80.0174 (12)0.0186 (13)0.0197 (13)0.0028 (10)0.0048 (10)0.0011 (10)
C90.0117 (10)0.0183 (12)0.0188 (12)0.0019 (10)0.0023 (10)0.0051 (11)
C100.0192 (13)0.0268 (14)0.0232 (16)0.0003 (10)0.0031 (11)0.0068 (11)
C110.0192 (12)0.0255 (13)0.0224 (14)0.0048 (10)0.0042 (11)0.0016 (12)
C120.0146 (11)0.0136 (11)0.0195 (13)0.0007 (9)0.0021 (10)0.0029 (10)
C130.0158 (12)0.0167 (12)0.0227 (13)0.0031 (10)0.0008 (11)0.0017 (10)
C140.0264 (15)0.0270 (15)0.0378 (18)0.0123 (12)0.0026 (13)0.0085 (13)
Geometric parameters (Å, º) top
S1—C11.648 (3)C7—C81.570 (4)
O1—C121.211 (3)C7—H7A0.9900
N1—C11.369 (3)C7—H7B0.9900
N1—C121.413 (3)C8—H8A0.9900
N1—C41.486 (3)C8—H8B0.9900
C1—C21.524 (3)C9—C111.524 (4)
C2—C31.526 (3)C9—C101.531 (4)
C2—C2i1.576 (5)C10—H10A0.9800
C2—H21.0000C10—H10B0.9800
C3—C41.540 (3)C10—H10C0.9800
C3—C81.542 (3)C11—H11A0.9800
C3—C91.564 (3)C11—H11B0.9800
C4—C51.554 (3)C11—H11C0.9800
C4—H41.0000C12—C131.503 (4)
C5—C61.540 (4)C13—C141.521 (4)
C5—H5A0.9900C13—H13A0.9900
C5—H5B0.9900C13—H13B0.9900
C6—C71.539 (4)C14—H14A0.9800
C6—C91.540 (4)C14—H14B0.9800
C6—H61.0000C14—H14C0.9800
C1—N1—C12130.7 (2)H7A—C7—H7B109.0
C1—N1—C4111.81 (19)C3—C8—C7101.8 (2)
C12—N1—C4116.2 (2)C3—C8—H8A111.4
N1—C1—C2108.4 (2)C7—C8—H8A111.4
N1—C1—S1129.01 (19)C3—C8—H8B111.4
C2—C1—S1122.52 (19)C7—C8—H8B111.4
C1—C2—C3102.38 (18)H8A—C8—H8B109.3
C1—C2—C2i112.35 (13)C11—C9—C10106.5 (2)
C3—C2—C2i112.8 (2)C11—C9—C6113.5 (2)
C1—C2—H2109.7C10—C9—C6113.6 (2)
C3—C2—H2109.7C11—C9—C3116.9 (2)
C2i—C2—H2109.7C10—C9—C3113.3 (2)
C2—C3—C4103.72 (19)C6—C9—C392.89 (19)
C2—C3—C8123.9 (2)C9—C10—H10A109.5
C4—C3—C8105.2 (2)C9—C10—H10B109.5
C2—C3—C9116.3 (2)H10A—C10—H10B109.5
C4—C3—C9103.4 (2)C9—C10—H10C109.5
C8—C3—C9102.2 (2)H10A—C10—H10C109.5
N1—C4—C3103.25 (19)H10B—C10—H10C109.5
N1—C4—C5117.8 (2)C9—C11—H11A109.5
C3—C4—C5103.89 (19)C9—C11—H11B109.5
N1—C4—H4110.4H11A—C11—H11B109.5
C3—C4—H4110.4C9—C11—H11C109.5
C5—C4—H4110.4H11A—C11—H11C109.5
C6—C5—C4102.0 (2)H11B—C11—H11C109.5
C6—C5—H5A111.4O1—C12—N1116.9 (2)
C4—C5—H5A111.4O1—C12—C13123.1 (2)
C6—C5—H5B111.4N1—C12—C13119.9 (2)
C4—C5—H5B111.4C12—C13—C14111.0 (2)
H5A—C5—H5B109.2C12—C13—H13A109.4
C7—C6—C5108.2 (2)C14—C13—H13A109.4
C7—C6—C9102.6 (2)C12—C13—H13B109.4
C5—C6—C9102.3 (2)C14—C13—H13B109.4
C7—C6—H6114.1H13A—C13—H13B108.0
C5—C6—H6114.1C13—C14—H14A109.5
C9—C6—H6114.1C13—C14—H14B109.5
C6—C7—C8103.6 (2)H14A—C14—H14B109.5
C6—C7—H7A111.0C13—C14—H14C109.5
C8—C7—H7A111.0H14A—C14—H14C109.5
C6—C7—H7B111.0H14B—C14—H14C109.5
C8—C7—H7B111.0
C12—N1—C1—C2158.2 (2)C4—C5—C6—C941.2 (3)
C4—N1—C1—C28.3 (3)C5—C6—C7—C873.3 (3)
C12—N1—C1—S124.9 (4)C9—C6—C7—C834.4 (3)
C4—N1—C1—S1168.63 (19)C2—C3—C8—C7171.0 (2)
N1—C1—C2—C325.5 (2)C4—C3—C8—C770.4 (2)
S1—C1—C2—C3151.66 (18)C9—C3—C8—C737.3 (2)
N1—C1—C2—C2i95.8 (3)C6—C7—C8—C32.1 (3)
S1—C1—C2—C2i87.1 (3)C7—C6—C9—C11176.3 (2)
C1—C2—C2i—C1i20.4 (3)C5—C6—C9—C1164.1 (3)
C1—C2—C3—C431.9 (2)C7—C6—C9—C1061.8 (3)
C2i—C2—C3—C489.1 (2)C5—C6—C9—C10174.0 (2)
C1—C2—C3—C8151.2 (2)C7—C6—C9—C355.2 (2)
C2i—C2—C3—C830.2 (3)C5—C6—C9—C357.0 (2)
C1—C2—C3—C980.8 (2)C2—C3—C9—C1146.9 (3)
C2i—C2—C3—C9158.2 (2)C4—C3—C9—C1166.0 (3)
C1—N1—C4—C312.4 (3)C8—C3—C9—C11175.1 (2)
C12—N1—C4—C3179.0 (2)C2—C3—C9—C1077.6 (3)
C1—N1—C4—C5126.1 (2)C4—C3—C9—C10169.5 (2)
C12—N1—C4—C565.2 (3)C8—C3—C9—C1060.4 (3)
C2—C3—C4—N127.5 (2)C2—C3—C9—C6165.2 (2)
C8—C3—C4—N1158.87 (19)C4—C3—C9—C652.2 (2)
C9—C3—C4—N194.3 (2)C8—C3—C9—C656.9 (2)
C2—C3—C4—C5151.0 (2)C1—N1—C12—O1172.5 (2)
C8—C3—C4—C577.6 (2)C4—N1—C12—O16.5 (3)
C9—C3—C4—C529.2 (2)C1—N1—C12—C134.8 (4)
N1—C4—C5—C6120.1 (2)C4—N1—C12—C13170.8 (2)
C3—C4—C5—C66.7 (3)O1—C12—C13—C140.7 (4)
C4—C5—C6—C766.7 (3)N1—C12—C13—C14176.4 (2)
Symmetry code: (i) y, x, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H40N2O2S2
Mr500.74
Crystal system, space groupTetragonal, P41212
Temperature (K)123
a, c (Å)13.8159 (3), 13.5221 (6)
V3)2581.09 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerBruker X8 APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.94, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
18157, 3814, 3601
Rint0.052
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.100, 1.19
No. of reflections3814
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30
Absolute structureParsons & Flack (2004); Flack x determined using 1367 quotients [(I+)-(I-)]/[(I+)+(I-)]
Absolute structure parameter0.04 (4)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), X-SEED (Barbour, 2001), CIFTAB (Sheldrick, 1997).

 

Acknowledgements

We acknowledge support from Monash University and the Australian Research Council for funding this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamaru, Y., Harada, T. & Yoshida, Z. (1978). J. Am. Chem. Soc. 100, 1923–1925.  CrossRef CAS Web of Science Google Scholar
First citationValezquez, F. & Olivo, H. F. (2002) Curr. Org. Chem. 6, 303–340.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds