organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(4-Benzyl-1H-1,2,3-triazol-1-yl)meth­yl]-5H-dibenzo[b,f]azepine

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 24 June 2013; accepted 3 July 2013; online 10 July 2013)

In the title compound, C24H20N4, the azepine ring adopts a boat conformation and the dihedral angle between the benzene rings fused to it is 57.95 (8)°. The bond-angle sum at the azepine N atom is 346.6°, indicating a significant deviation from planarity. The triazole ring subtends a dihedral angle of 71.45 (10)° with the terminal phenyl group. A weak intra­molecular C—H⋯Na (a = azepine) inter­action occurs, which closes an S(6) ring.

Related literature

For a related structure and background to isoxazole derivatives, see: Abdoh et al. (2013[Abdoh, M. M. M., Madan Kumar, S., Vinay Kumar, K. S., Manjunath, B. C., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o17.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N4

  • Mr = 364.44

  • Monoclinic, P 21 /c

  • a = 9.4394 (10) Å

  • b = 22.206 (3) Å

  • c = 9.4330 (9) Å

  • β = 107.172 (3)°

  • V = 1889.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 300 K

  • 0.26 × 0.23 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 22703 measured reflections

  • 3711 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.01

  • 3711 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N4 0.97 2.56 3.173 (2) 121

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

The title compound was synthesized, crystallized and its crystal structure is presented as part of our investigations on isoxazole derivatives (Abdoh, et al.,, 2013)

In the title molecule (Fig. 1.) benzene rings fused to azepine rings are nearly planar and its geometry is similar to 5-(Prop-2–1-yl)-5H-dibenzo[b,f]azepine: orthorhombic polymorph. Seven-membered azepine ring adopts a boat conformation as indicated by the puckering parameters Q2 = 0.7392 (16) Å, Q3 = 0.2157 (15) Å, ϕ2 = 178.44 (12) °, ϕ3 = 178.4 (4) °, and the total puckering amplitude, QT = 0.7700 (15) Å. The title molecule adopts butterfly shape. The dihedral angle between triazole moiety and benzene ring (C1/C2/C3/C4/C5/C6) is 71.45 (10)°. The packing of molecules is shown in the figure 2.

Related literature top

For a related structure and background to isoxazole derivatives, see: Abdoh et al. (2013).

Experimental top

5-(prop-2-yn-1-yl)-5H-dibenzo[b,f]azepine (2.1 mmol) was taken in a mixture of dichloromethane and water in the ratio 1:1, cuprous iodide (0.21 mmol) was added followed by sodium ascorbate (0.21 mmol) at room temperature. After 10 minutes, benzyl azide was added (2.3 mmol) at room temperature. Then, the resulting reaction mixture was allowed for stirring upto 6 h. After completion of reaction (monitored by TLC), the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 x 20 ml), the combined ethyl acetate layer was washed with brine solution (2 x 25 ml). Then, the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford crude, which was purified by column chromatography over silica gel (60–120 mesh) using Hexane: Ethyl acetate mixture in 8:2 ratios as eluent. The pure compound was crystallized in ethyl acetate and hexane to obtain light red blocks.

1H NMR (DMSO-d6, 300 MHz): δ 7.33 (t, J=7.2 Hz, 2H), 7.13 (t, J=8.7 Hz, 4H), 7.02 (t, J=7.2 Hz, 2H), 6.75 (s, 2H), 4.51 (d, J=1.8 Hz, 2H), 3.08 (s, 1H).

MS (M++1): 232. Melting point (°C): 90 (Uncorrected)

Refinement top

All the hydrogen atoms of the compound are fixed geometrically (C—H= 0.93–0.97 Å) and allowed to ride on their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic a axis.
5-[(4-Benzyl-1H-1,2,3-triazol-1-yl)methyl]-5H-dibenzo[b,f]azepine top
Crystal data top
C24H20N4F(000) = 768
Mr = 364.44Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3711 reflections
a = 9.4394 (10) Åθ = 1.8–26.0°
b = 22.206 (3) ŵ = 0.08 mm1
c = 9.4330 (9) ÅT = 300 K
β = 107.172 (3)°Block, red
V = 1889.1 (4) Å30.26 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.045
Radiation source: graphiteθmax = 26.0°, θmin = 1.8°
ϕ and ω scansh = 1111
22703 measured reflectionsk = 2726
3711 independent reflectionsl = 1111
2982 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.445P]
where P = (Fo2 + 2Fc2)/3
3711 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H20N4V = 1889.1 (4) Å3
Mr = 364.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4394 (10) ŵ = 0.08 mm1
b = 22.206 (3) ÅT = 300 K
c = 9.4330 (9) Å0.26 × 0.23 × 0.20 mm
β = 107.172 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2982 reflections with I > 2σ(I)
22703 measured reflectionsRint = 0.045
3711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
3711 reflectionsΔρmin = 0.23 e Å3
253 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.48315 (15)0.41800 (6)0.71285 (15)0.0485 (4)
N20.59240 (19)0.44728 (7)0.81571 (19)0.0671 (6)
N30.68625 (18)0.40672 (9)0.89031 (18)0.0687 (6)
N40.35717 (13)0.32303 (5)0.47460 (12)0.0358 (3)
C10.0910 (2)0.43114 (8)0.5802 (2)0.0602 (6)
C20.22436 (19)0.45366 (6)0.66850 (18)0.0475 (5)
C30.2290 (2)0.48013 (7)0.8030 (2)0.0536 (6)
C40.1028 (2)0.48466 (8)0.8465 (2)0.0605 (6)
C50.0294 (2)0.46273 (8)0.7577 (3)0.0667 (7)
C60.0358 (2)0.43573 (8)0.6250 (3)0.0690 (7)
C70.3606 (2)0.45281 (7)0.6163 (2)0.0562 (6)
C80.63739 (19)0.35255 (9)0.83410 (18)0.0551 (5)
C90.50799 (17)0.35803 (7)0.72201 (15)0.0410 (4)
C100.40884 (17)0.31033 (7)0.63385 (15)0.0408 (4)
C110.46560 (15)0.33324 (6)0.39878 (15)0.0357 (4)
C120.42678 (17)0.37101 (6)0.27384 (16)0.0404 (4)
C130.5336 (2)0.38298 (7)0.20193 (19)0.0527 (6)
C140.6730 (2)0.35838 (9)0.2500 (2)0.0600 (6)
C150.71005 (19)0.32105 (8)0.3721 (2)0.0553 (6)
C160.60713 (17)0.30859 (7)0.44645 (17)0.0445 (5)
C170.27898 (19)0.39760 (7)0.21582 (17)0.0478 (5)
C180.15052 (19)0.37247 (7)0.21404 (18)0.0484 (5)
C190.13042 (16)0.31254 (7)0.26945 (16)0.0402 (4)
C200.23460 (15)0.28684 (6)0.39198 (14)0.0353 (4)
C210.00604 (17)0.27797 (8)0.19635 (18)0.0523 (5)
C220.01154 (19)0.21998 (9)0.2393 (2)0.0582 (6)
C230.0936 (2)0.19481 (8)0.35653 (19)0.0544 (6)
C240.21656 (18)0.22797 (7)0.43327 (17)0.0447 (5)
H10.086300.412800.490300.0720*
H30.318300.494900.864200.0640*
H40.107100.502700.936700.0730*
H50.114800.466100.787200.0800*
H60.125300.420500.565200.0830*
H7A0.334700.435900.517100.0670*
H7B0.393500.493900.610700.0670*
H80.685000.316300.866900.0660*
H10A0.461800.272300.649400.0490*
H10B0.323500.306000.670300.0490*
H130.509700.408200.119600.0630*
H140.742300.366900.200300.0720*
H150.804300.304200.404600.0660*
H160.632900.283500.529000.0530*
H170.274400.436100.176000.0570*
H180.065400.395200.173700.0580*
H210.066400.294700.116800.0630*
H220.094800.197900.188600.0700*
H230.082500.155400.384700.0650*
H240.287600.210700.513000.0540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0535 (8)0.0486 (7)0.0494 (8)0.0117 (6)0.0243 (7)0.0132 (6)
N20.0721 (11)0.0676 (10)0.0667 (10)0.0319 (8)0.0284 (9)0.0278 (8)
N30.0584 (9)0.0904 (12)0.0560 (9)0.0262 (9)0.0148 (8)0.0203 (9)
N40.0388 (6)0.0403 (6)0.0274 (6)0.0056 (5)0.0084 (5)0.0010 (5)
C10.0747 (12)0.0467 (9)0.0548 (10)0.0002 (8)0.0122 (9)0.0074 (8)
C20.0605 (10)0.0334 (7)0.0510 (9)0.0017 (7)0.0203 (8)0.0009 (6)
C30.0587 (10)0.0483 (9)0.0551 (10)0.0030 (7)0.0190 (8)0.0087 (7)
C40.0681 (12)0.0592 (10)0.0615 (11)0.0058 (9)0.0305 (10)0.0041 (8)
C50.0601 (12)0.0564 (11)0.0906 (15)0.0077 (9)0.0329 (11)0.0111 (10)
C60.0547 (11)0.0542 (10)0.0881 (15)0.0045 (8)0.0056 (10)0.0011 (10)
C70.0755 (12)0.0450 (9)0.0562 (10)0.0010 (8)0.0319 (9)0.0008 (7)
C80.0511 (9)0.0718 (11)0.0393 (8)0.0110 (8)0.0085 (7)0.0070 (8)
C90.0454 (8)0.0498 (8)0.0310 (7)0.0091 (6)0.0164 (6)0.0051 (6)
C100.0476 (8)0.0450 (8)0.0285 (7)0.0077 (6)0.0092 (6)0.0005 (6)
C110.0412 (7)0.0350 (7)0.0309 (7)0.0060 (5)0.0108 (6)0.0053 (5)
C120.0506 (8)0.0365 (7)0.0350 (7)0.0059 (6)0.0139 (7)0.0016 (6)
C130.0663 (11)0.0538 (9)0.0420 (9)0.0098 (8)0.0222 (8)0.0044 (7)
C140.0581 (11)0.0758 (12)0.0545 (10)0.0136 (9)0.0297 (9)0.0049 (9)
C150.0427 (9)0.0717 (11)0.0528 (10)0.0017 (8)0.0159 (8)0.0090 (8)
C160.0449 (8)0.0506 (8)0.0368 (8)0.0016 (7)0.0101 (7)0.0024 (6)
C170.0645 (10)0.0375 (8)0.0393 (8)0.0062 (7)0.0123 (7)0.0068 (6)
C180.0516 (9)0.0478 (8)0.0419 (8)0.0150 (7)0.0079 (7)0.0031 (6)
C190.0362 (7)0.0493 (8)0.0352 (7)0.0042 (6)0.0106 (6)0.0033 (6)
C200.0364 (7)0.0410 (7)0.0293 (7)0.0022 (6)0.0109 (6)0.0046 (5)
C210.0367 (8)0.0746 (11)0.0409 (8)0.0023 (7)0.0041 (7)0.0035 (8)
C220.0477 (9)0.0767 (12)0.0487 (10)0.0226 (8)0.0118 (8)0.0122 (8)
C230.0641 (11)0.0534 (9)0.0448 (9)0.0206 (8)0.0145 (8)0.0045 (7)
C240.0500 (9)0.0468 (8)0.0351 (8)0.0079 (7)0.0090 (7)0.0003 (6)
Geometric parameters (Å, º) top
N1—N21.355 (2)C19—C201.399 (2)
N1—C71.464 (2)C19—C211.402 (2)
N1—C91.351 (2)C20—C241.389 (2)
N2—N31.313 (3)C21—C221.375 (3)
N3—C81.340 (3)C22—C231.368 (3)
N4—C101.4634 (17)C23—C241.385 (2)
N4—C111.4293 (19)C1—H10.9300
N4—C201.4351 (18)C3—H30.9300
C1—C21.382 (3)C4—H40.9300
C1—C61.386 (3)C5—H50.9300
C2—C31.387 (2)C6—H60.9300
C2—C71.507 (3)C7—H7A0.9700
C3—C41.373 (3)C7—H7B0.9700
C4—C51.371 (3)C8—H80.9300
C5—C61.373 (4)C10—H10A0.9700
C8—C91.365 (2)C10—H10B0.9700
C9—C101.493 (2)C13—H130.9300
C11—C121.404 (2)C14—H140.9300
C11—C161.390 (2)C15—H150.9300
C12—C131.397 (2)C16—H160.9300
C12—C171.464 (2)C17—H170.9300
C13—C141.372 (3)C18—H180.9300
C14—C151.378 (3)C21—H210.9300
C15—C161.384 (2)C22—H220.9300
C17—C181.330 (3)C23—H230.9300
C18—C191.463 (2)C24—H240.9300
N2—N1—C7119.12 (13)C20—C24—C23120.48 (15)
N2—N1—C9110.26 (13)C2—C1—H1120.00
C7—N1—C9130.61 (14)C6—C1—H1120.00
N1—N2—N3107.76 (15)C2—C3—H3120.00
N2—N3—C8107.75 (16)C4—C3—H3120.00
C10—N4—C11118.25 (12)C3—C4—H4120.00
C10—N4—C20114.87 (11)C5—C4—H4120.00
C11—N4—C20113.50 (11)C4—C5—H5120.00
C2—C1—C6120.31 (18)C6—C5—H5120.00
C1—C2—C3118.80 (17)C1—C6—H6120.00
C1—C2—C7120.80 (15)C5—C6—H6120.00
C3—C2—C7120.31 (16)N1—C7—H7A109.00
C2—C3—C4120.55 (17)N1—C7—H7B109.00
C3—C4—C5120.32 (18)C2—C7—H7A109.00
C4—C5—C6119.96 (19)C2—C7—H7B109.00
C1—C6—C5120.0 (2)H7A—C7—H7B108.00
N1—C7—C2113.40 (14)N3—C8—H8125.00
N3—C8—C9110.56 (17)C9—C8—H8125.00
N1—C9—C8103.67 (14)N4—C10—H10A109.00
N1—C9—C10126.54 (14)N4—C10—H10B109.00
C8—C9—C10129.70 (15)C9—C10—H10A109.00
N4—C10—C9113.52 (12)C9—C10—H10B109.00
N4—C11—C12117.83 (13)H10A—C10—H10B108.00
N4—C11—C16122.52 (12)C12—C13—H13119.00
C12—C11—C16119.64 (14)C14—C13—H13119.00
C11—C12—C13118.32 (15)C13—C14—H14120.00
C11—C12—C17122.57 (14)C15—C14—H14120.00
C13—C12—C17119.11 (14)C14—C15—H15120.00
C12—C13—C14121.53 (16)C16—C15—H15120.00
C13—C14—C15119.85 (18)C11—C16—H16120.00
C14—C15—C16120.07 (17)C15—C16—H16120.00
C11—C16—C15120.59 (15)C12—C17—H17117.00
C12—C17—C18126.86 (14)C18—C17—H17117.00
C17—C18—C19126.24 (16)C17—C18—H18117.00
C18—C19—C20122.19 (14)C19—C18—H18117.00
C18—C19—C21120.05 (14)C19—C21—H21119.00
C20—C19—C21117.73 (14)C22—C21—H21119.00
N4—C20—C19118.53 (12)C21—C22—H22120.00
N4—C20—C24121.38 (12)C23—C22—H22120.00
C19—C20—C24120.08 (14)C22—C23—H23120.00
C19—C21—C22121.63 (16)C24—C23—H23120.00
C21—C22—C23119.93 (17)C20—C24—H24120.00
C22—C23—C24120.09 (17)C23—C24—H24120.00
C7—N1—N2—N3178.33 (15)N3—C8—C9—C10175.78 (16)
C9—N1—N2—N30.1 (2)N1—C9—C10—N448.1 (2)
N2—N1—C7—C297.83 (18)C8—C9—C10—N4136.11 (17)
C9—N1—C7—C280.2 (2)N4—C11—C12—C13177.82 (13)
N2—N1—C9—C80.40 (18)N4—C11—C12—C172.8 (2)
N2—N1—C9—C10176.29 (15)C16—C11—C12—C130.6 (2)
C7—N1—C9—C8178.59 (17)C16—C11—C12—C17178.82 (14)
C7—N1—C9—C101.9 (3)N4—C11—C16—C15178.14 (14)
N1—N2—N3—C80.6 (2)C12—C11—C16—C150.1 (2)
N2—N3—C8—C90.9 (2)C11—C12—C13—C140.6 (2)
C11—N4—C10—C956.44 (17)C17—C12—C13—C14178.83 (16)
C20—N4—C10—C9165.14 (13)C11—C12—C17—C1835.1 (2)
C10—N4—C11—C12150.96 (13)C13—C12—C17—C18144.31 (17)
C10—N4—C11—C1627.36 (19)C12—C13—C14—C150.2 (3)
C20—N4—C11—C1270.09 (15)C13—C14—C15—C160.3 (3)
C20—N4—C11—C16111.60 (15)C14—C15—C16—C110.3 (3)
C10—N4—C20—C19146.64 (13)C12—C17—C18—C190.3 (3)
C10—N4—C20—C2431.99 (19)C17—C18—C19—C2033.4 (2)
C11—N4—C20—C1972.97 (16)C17—C18—C19—C21144.41 (17)
C11—N4—C20—C24108.41 (15)C18—C19—C20—N46.5 (2)
C6—C1—C2—C30.8 (2)C18—C19—C20—C24174.85 (15)
C6—C1—C2—C7175.74 (16)C21—C19—C20—N4175.64 (13)
C2—C1—C6—C50.0 (3)C21—C19—C20—C243.0 (2)
C1—C2—C3—C41.0 (2)C18—C19—C21—C22175.63 (16)
C7—C2—C3—C4175.58 (15)C20—C19—C21—C222.3 (2)
C1—C2—C7—N1119.86 (17)N4—C20—C24—C23176.75 (15)
C3—C2—C7—N163.67 (18)C19—C20—C24—C231.9 (2)
C2—C3—C4—C50.4 (3)C19—C21—C22—C230.3 (3)
C3—C4—C5—C60.4 (3)C21—C22—C23—C240.9 (3)
C4—C5—C6—C10.6 (3)C22—C23—C24—C200.2 (3)
N3—C8—C9—N10.77 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N40.972.563.173 (2)121

Experimental details

Crystal data
Chemical formulaC24H20N4
Mr364.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)9.4394 (10), 22.206 (3), 9.4330 (9)
β (°) 107.172 (3)
V3)1889.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.23 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22703, 3711, 2982
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.01
No. of reflections3711
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N40.972.563.173 (2)121
 

Acknowledgements

We thank Professor T. N. Guru Row and Vijith Kumar, SSCU, IISc, Bangalore, India, for providing facilities for the data collection.

References

First citationAbdoh, M. M. M., Madan Kumar, S., Vinay Kumar, K. S., Manjunath, B. C., Sadashiva, M. P. & Lokanath, N. K. (2013). Acta Cryst. E69, o17.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds