Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Cyanoanilinium iodide

David J. Vumbaco, ${ }^{\text {a }}$ Michael N. Kammer, ${ }^{\text {b }}$ Lynn V. Koplitz ${ }^{\text {c }}$ and Joel T. Mague ${ }^{\mathrm{d} *}$

${ }^{\text {a }}$ Department of Biological Sciences, Loyola University, New Orleans, LA 70118, USA, ${ }^{\mathbf{b}}$ Department of Physics, Loyola University, New Orleans, LA 70118, USA, ${ }^{\text {c }}$ Department of Chemistry, Loyola University, New Orleans, LA 70118, USA, and ${ }^{\mathbf{d}}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA Correspondence e-mail: joelt@tulane.edu

Received 11 July 2013; accepted 12 July 2013
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.016 ; w R$ factor $=0.041$; data-to-parameter ratio $=23.0$.

The solid-state structure of the title salt, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \mathrm{I}^{-}$, consists of cation-anion sheets lying parallel to (110), with the components linked by $\mathrm{N}-\mathrm{H} \cdots$. I hydrogen bonds.

Related literature

For the structure of 2-cyano-1-methylpyridinium iodide, see: Kammer et al. (2013). For structures of other 2-cyanoanilinium salts, see: Cui \& Chen (2010); Zhang (2009); Cui \& Wen (2008); Oueslati et al. (2005). For the structures of 4-cyanoanilinium halides, see: Mague et al. (2012); Vumbaco et al. (2012); Colapietro et al. (1981).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}^{-}$
$M_{r}=246.05$
Orthorhombic, Pbca
$a=10.1474$ (15) A
$b=8.6979$ (13) £
$c=18.073(3) \AA$
$V=1595.2(4) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=3.94 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.20 \times 0.19 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: numerical (SADABS; Bruker, 2010)
$T_{\text {min }}=0.43, T_{\text {max }}=0.58$

25911 measured reflections 2112 independent reflections 2030 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016 \quad 92$ parameters
$w R\left(F^{2}\right)=0.041 \quad \mathrm{H}$-atom parameters constrained
$S=1.10$
$\Delta \rho_{\text {max }}=0.59$ e \AA^{-3}
2112 reflections
$\Delta \rho_{\text {min }}=-0.58$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{I} 1$	0.88	2.74	$3.6069(13)$	169
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 1^{\mathrm{i}}$	0.88	2.71	$3.5501(14)$	160
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.88	2.84	$3.6615(13)$	156

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.
Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXM (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund (Grant LEQSF (2003-2003)-ENH -TR-67) for the purchase of the APEX diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7106).

References

Brandenburg, K. \& Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany
Bruker (2010). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
Colapietro, M., Domenicano, A., Marciante, C. \& Portalone, G. (1981). Acta Cryst. B37, 387-394.
Cui, L.-J. \& Chen, X.-Y. (2010). Acta Cryst. E66, o467.
Cui, L.-J. \& Wen, X.-C. (2008). Acta Cryst. E64, o1620.
Kammer, M. N., Koplitz, L. V. \& Mague, J. T. (2013). Acta Cryst. E69, o1281
Mague, J. T., Vumbaco, D. J., Kammer, M. N. \& Koplitz, L. V. (2012). Acta Cryst. E68, o2623.
Oueslati, A., Kefi, R., Akriche, S. \& Ben Nasr, C. (2005). Z. Kristallogr. 220, 365.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vumbaco, D. J., Kammer, M. N., Koplitz, L. V. \& Mague, J. T. (2012). Acta Cryst. E68, o2884.
Zhang, L. (2009). Acta Cryst. E65, o2407.

supporting information

Acta Cryst. (2013). E69, o1288 [doi:10.1107/S1600536813019314]

2-Cyanoanilinium iodide

David J. Vumbaco, Michael N. Kammer, Lynn V. Koplitz and Joel T. Mague

S1. Comment

In the solid state, salts of the isomeric cyanoanilinium ions exhibit both layer and network structures. Thus, the iodide (Mague et al., 2012) and chloride (Colapietro et al., 1981) salts of the 4-cyanoanilinium ion as well as the chloride (Oueslati, et al., 2005) and nitrate (Cui \& Wen, 2008) salts of the 2-cyanoanilinium ion have layer structures in which the $-\mathrm{NH}_{3}{ }^{+}$and anion moieties form a double layer with the organic portion of the cations protruding perpendicularly from both sides of this double layer. By contrast, the bromide (Zhang, 2009) and perchlorate (Cui \& Chen, 2010) salts of the 2cyanoanilinium ion form network structures while 4-cyanoanilinium bromide (Vumbaco et al., 2012) forms a stepped layer structure. A different structure type is found in the title compound where the basic unit is a zigzag chain of alternating cations and anions running parallel to a assembled by alternating short and long $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds (Table 1, Fig. 1). These chains are assembled into sheets parallel to (110) by intermediate length $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds between cations in one chain and anions in the next in which the cations in each chain are arranged in an "umbrella" fashion (Fig. 3) instead of projecting straight out towards the edges of the layer. It is also significantly different from the structure adopted by the isomeric compound 2-cyano- N-methylpyridinium iodide (Kammer et al., 2013), at least in part because the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions in this compound are expected to be weaker than the $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interactions in the title compound.

S2. Experimental

2-Cyanoaniline (0.55 g) and 1.0 ml of aqueous hydroiodic acid (47% by mass) were combined in 10 ml of ethanol. This solution was slowly evaporated to dryness at room temperature to form colourless blocks of the title compound.

S3. Refinement

H -atoms attached to carbon were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ while those attached to nitrogen were placed in locations derived from a difference map and their coordinates then adjusted to give $\mathrm{N}-\mathrm{H}=0.88 \AA$. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Figure 1

Perspective view of the cation-anion pair showing the shortest interionic $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds and 50% probability displacement ellipsoids.

Figure 2
Packing viewed down the b axis with $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interactions shown as dotted lines.

Figure 3
Packing viewed down the a axis with $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interactions shown as dotted lines.

2-Cyanoanilinium iodide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}^{-}$
$M_{r}=246.05$
Orthorhombic, Pbca
$a=10.1474$ (15) \AA
$b=8.6979(13) \AA$
$c=18.073$ (3) \AA
$V=1595.2(4) \AA^{3}$
$Z=8$
$F(000)=928$

Data collection

Bruker SMART APEX CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2010)
$T_{\text {min }}=0.43, T_{\text {max }}=0.58$

Refinement

Refinement on $F^{2} \quad w R\left(F^{2}\right)=0.041$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$D_{\mathrm{x}}=2.049 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9853 reflections
$\theta=2.3-29.1^{\circ}$
$\mu=3.94 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.20 \times 0.19 \times 0.16 \mathrm{~mm}$

25911 measured reflections
2112 independent reflections
2030 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-11 \rightarrow 11$
$l=-24 \rightarrow 24$
$S=1.10$
2112 reflections

92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0208 P)^{2}+0.7585 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.58 \mathrm{e}^{-3}$
Extinction correction: SHELXL2013 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00151 (13)

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at $\varphi=$ $0.00,90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at $\omega=-30.00$ and 210.00°. The scan time was $10 \mathrm{sec} /$ frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.58823(2)$	$0.05477(2)$	$0.13679(2)$	$0.01326(5)$
N1	$0.58054(12)$	$0.44877(14)$	$0.19889(8)$	$0.0140(3)$
H1A	0.5870	0.3496	0.1900	0.017^{*}
H1B	0.5590	0.4716	0.2448	0.017^{*}
H1C	0.6593	0.4909	0.1973	0.017^{*}
N2	$0.28338(14)$	$0.23930(17)$	$0.21818(8)$	$0.0246(3)$
C1	$0.49549(15)$	$0.51204(18)$	$0.14089(7)$	$0.0129(3)$
C2	$0.54089(14)$	$0.63213(16)$	$0.09804(8)$	$0.0149(3)$
H2	0.6252	0.6758	0.1071	0.018^{*}
C3	$0.46120(15)$	$0.68861(17)$	$0.04120(8)$	$0.0170(3)$
H3	0.4916	0.7711	0.0113	0.020^{*}
C4	$0.33787(15)$	$0.62516(17)$	$0.02809(8)$	$0.0183(3)$
H4	0.2854	0.6627	-0.0115	0.022^{*}
C5	$0.29073(15)$	$0.50692(19)$	$0.07257(8)$	$0.0172(3)$
H5	0.2054	0.4654	0.0643	0.021^{*}
C6	$0.36974(17)$	$0.44965(16)$	$0.12950(8)$	$0.0141(3)$
C7	$0.32073(14)$	$0.33165(17)$	$0.17807(8)$	$0.0167(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01359(7)$	$0.01201(7)$	$0.01419(7)$	$-0.00040(3)$	$-0.00112(3)$	$-0.00004(3)$
N1	$0.0147(6)$	$0.0120(6)$	$0.0152(6)$	$-0.0004(4)$	$-0.0008(4)$	$0.0005(4)$
N2	$0.0270(7)$	$0.0236(7)$	$0.0233(7)$	$-0.0071(6)$	$0.0076(6)$	$-0.0023(6)$
C1	$0.0145(7)$	$0.0117(7)$	$0.0126(6)$	$0.0012(5)$	$0.0003(5)$	$-0.0022(5)$
C2	$0.0153(6)$	$0.0120(6)$	$0.0174(6)$	$-0.0003(5)$	$0.0003(5)$	$-0.0002(5)$
C3	$0.0210(7)$	$0.0127(7)$	$0.0174(7)$	$0.0019(6)$	$0.0010(5)$	$0.0009(5)$
C4	$0.0213(7)$	$0.0163(7)$	$0.0174(6)$	$0.0050(6)$	$-0.0035(5)$	$-0.0020(6)$
C5	$0.0150(6)$	$0.0166(7)$	$0.0199(7)$	$0.0020(6)$	$-0.0011(5)$	$-0.0058(6)$

C6	$0.0142(8)$	$0.0119(7)$	$0.0161(7)$	$0.0012(5)$	$0.0029(5)$	$-0.0033(5)$
C7	$0.0143(6)$	$0.0174(7)$	$0.0182(7)$	$-0.0017(5)$	$0.0023(5)$	$-0.0053(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C1	1.4651 (19)	C2-H2	0.9500
N1-H1A	0.8800	C3-C4	1.388 (2)
N1-H1B	0.8800	C3-H3	0.9500
N1-H1C	0.8800	C4-C5	1.390 (2)
N2-C7	1.146 (2)	C4-H4	0.9500
C1-C2	1.380 (2)	C5-C6	1.396 (2)
C1-C6	1.402 (2)	C5-H5	0.9500
C2-C3	1.397 (2)	C6-C7	1.439 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	106.4	C4-C3-H3	119.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	116.3	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.7
H1A-N1-H1B	114.3	C3-C4-C5	120.37 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	110.8	C3-C4-H4	119.8
H1A-N1-H1C	109.6	C5-C4-H4	119.8
H1B-N1-H1C	99.3	C4-C5-C6	119.51 (14)
C2- $\mathrm{C} 1-\mathrm{C} 6$	120.98 (13)	C4-C5-H5	120.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	119.30 (13)	C6-C5-H5	120.2
C6- $\mathrm{C} 1-\mathrm{N} 1$	119.72 (13)	C5-C6-C1	119.52 (14)
C1-C2-C3	119.07 (14)	C5-C6-C7	120.37 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5	C1-C6-C7	120.07 (14)
C3-C2-H2	120.5	N2-C7-C6	178.30 (17)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.51 (14)		
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.9 (2)	C4-C5-C6-C7	177.45 (14)
N1-C1-C2-C3	177.87 (13)	C2-C1-C6-C5	1.9 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.2 (2)	N1-C1-C6-C5	-177.89 (13)
C2-C3-C4-C5	1.6 (2)	C2-C1-C6-C7	-175.70 (13)
C3-C4-C5-C6	-1.6 (2)	N1-C1-C6-C7	4.5 (2)
C4-C5-C6-C1	-0.1 (2)		

Hydrogen-bond geometry (${ }^{\prime},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{I} 1$	0.88	2.74	$3.6069(13)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{I} 1^{\mathrm{i}}$	0.88	2.71	$3.5501(14)$	160
$\mathrm{~N} 1 — \mathrm{H} 1 C \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.88	2.84	$3.6615(13)$	156

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+3 / 2, y+1 / 2, z$.

