[Journal logo]

Volume 69 
Part 8 
Page o1274  
August 2013  

Received 12 July 2013
Accepted 13 July 2013
Online 20 July 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
R = 0.044
wR = 0.127
Data-to-parameter ratio = 15.4
Details
Open access

(2E)-3-(6-Chloro-2-methoxyquinolin-3-yl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India,bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India,cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

The molecule of the title compound, C24H19ClN2O2, is bent, with the dihedral angle between the terminal quinoline ring systems being 63.30 (5)°. The quinolinyl residues are connected by an almost planar prop-2-en-1-one bridge (r.m.s. deviation = 0.022 Å), with the dihedral angles between this plane and the appended quinolinyl residues being 75.86 (7) and 38.54 (7)°. The C atom of the methoxy group is close to coplanar with its attached ring [deviation = 0.116 (2) Å]. In the crystal, a three-dimensional architecture is constructed by methyl-carbonyl C-H...O interactions and [pi]-[pi] interactions between centrosymmetrically related quinolinyl residues [centroid-to-centroid separations 3.5341 (10) and 3.8719 (9) Å].

Related literature

For background to the biological activities and photophysical properties of quinolines, and their utility as intermediates in organic synthesis, see: Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroatom Chem. 23, 525-530.]); Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]). For background to the bio-activities of quinolinyl chalcones, see: Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19ClN2O2

  • Mr = 402.86

  • Monoclinic, P 21 /n

  • a = 13.1605 (3) Å

  • b = 10.4876 (2) Å

  • c = 14.8786 (3) Å

  • [beta] = 106.354 (2)°

  • V = 1970.49 (7) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 1.90 mm-1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.711, Tmax = 1.000

  • 8189 measured reflections

  • 4053 independent reflections

  • 3580 reflections with I > 2[sigma](I)

  • Rint = 0.019

Refinement
  • R[F2 > 2[sigma](F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.07

  • 4053 reflections

  • 264 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.61 e Å-3

  • [Delta][rho]min = -0.49 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C10-H10B...O1i 0.98 2.52 3.221 (2) 129
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7107 ).


Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship [grant No. 09/919/(0014)/2012 EMR-I]. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR-MOHE/SC/03).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.  [CrossRef] [ChemPort]
Prasath, R. & Bhavana, P. (2012). Heteroatom Chem. 23, 525-530.  [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.  [CSD] [CrossRef] [ChemPort]
Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1274  [ doi:10.1107/S1600536813019399 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.