organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Flunarizinium hydrogen maleate

Channappa N. Kavitha,^a Jerry P. Jasinski,^b* Somer M. Matar,^b H. S. Yathirajan^a and A. R. Ramesha^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cR. L. Fine Chem., Bangalore 560 064, India Correspondence e-mail: jjasinski@keene.edu

Received 16 July 2013; accepted 22 July 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.136; data-to-parameter ratio = 15.3.

In the cation of the title salt {systematic name: 4-[bis(4-fluorophenyl)methyl]-1-[(2*E*)-3-phenylprop-2-en-1-yl]piperazin-1-ium hydrogen maleate}, $C_{26}H_{27}F_2N_2^+ \cdot C_4H_3O_4^-$, the protonated piperazine ring is in a chair conformation. The dihedral angle between the 4-fluorophenyl rings is 68.2 (2)°. An intramolecular O-H···O hydrogen bond occurs in the anion. In the crystal, N-H···O, C-H···O and C-H···F interactions are observed, which link the ions into [001] chains.

Related literature

For backgorund to flunarizine, see: Amery (1983); Holmes *et al.* (1984). For related structures, see: Jasinski, Butcher *et al.* (2010); Jasinski, Pek *et al.* (2010); Kavitha *et al.* (2013). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

$C_{26}H_{27}F_2N_2^+ \cdot C_4H_3O_4^-$	
$M_r = 520.56$	
Monoclinic, $P2_1/c$	
a = 22.1215 (5) Å	

b = 10.8620 (2) Åc = 11.3215 (2) Å $\beta = 98.879 (2)^{\circ}$ $V = 2687.77 (9) \text{ Å}^{3}$ Z = 4Cu K α radiation $\mu = 0.79 \text{ mm}^{-1}$

Data collection

Agilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis
RED; Agilent, 2012)
$T_{\min} = 0.871, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 344 parameters $wR(F^2) = 0.136$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.52 \text{ e } \text{\AA}^{-3}$ 5260 reflections $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

T = 173 K

 $R_{\rm int}=0.040$

 $0.42 \times 0.38 \times 0.26 \text{ mm}$

17207 measured reflections 5260 independent reflections

4484 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1S - H1S \cdots O4S$	0.82	1.63	2.451 (2)	177
$N1 - H1 \cdots O3S$	0.91	1.83	2.7190 (18)	165
$C1 - H1B \cdot \cdot \cdot O2S^{i}$	0.97	2.51	3.354 (2)	146
C26−H26···O3S ⁱⁱ	0.93	2.53	3.278 (2)	138
$C2S - H2S \cdots O4S^{iii}$	0.93	2.46	3.386 (2)	171
$C23-H23\cdots F1^{iv}$	0.93	2.53	3.342 (2)	145

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$, (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$, (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$, (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7110).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amery, W. K. (1983). Headache, 23, 70-74.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs. 27, 6–44.
- Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, 0366–0367.
- Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012–o2013.
- Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260–o261.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1344 [doi:10.1107/S1600536813020291]

Flunarizinium hydrogen maleate

Channappa N. Kavitha, Jerry P. Jasinski, Somer M. Matar, H. S. Yathirajan and A. R. Ramesha

S1. Comment

Flunarizine (chemically, 1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenyl prop-2-en-1-yl]piperazine), a piperazine derivative is a non-selective calcium antagonist (Amery, 1983). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use is published (Holmes *et al.*, 1984).

In addition to the structures of trimipraminium maleate (Jasinski, Butcher *et al.*, 2010) and 4-(4-chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate (Jasinski, Pek *et al.*, 2010), we have recently reported the crystal structure of 4-[bis(4-fluorophenyl) methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium 3-carboxy propanoate (Kavitha *et al.*, 2013). As part of our ongoing studies of molecular salts of bioactive molecules, the paper reports the crystal and molecular structure of the title salt, (I).

The title compound, [systematic name: 1-[bis(4-fluorophenyl)methyl]-4- [(2E)-3-phenylprop-2-en-1-yl]piperazinium maleate], a maleate salt of Flunarizine crystallizes with one independent cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the protonated piperazine ring is in a chair conformation (puckering parameters Q, θ , and $\varphi = 0.5997$ (16)Å, 179.21 (15)° and 65 (10)°, respectively). The dihedral angle between the mean planes of the 4-fluorophenyl rings is 68.2 (2)°. The extended phenyl ring is twisted by 15.8 (9)° and 59.8 (5)°, respectively, from these two rings. Bond lengths are in normal ranges (Allen *et al.*, 1987). Strong intramolecular O—H···O and intermolecular N—H···O hydrogen bonds and weak N—H···O, C—H···F intermolecular interactions (Table 1) are observed which link the ions into chains along [001] (Fig. 2).

S2. Experimental

Flunarizine (4.05 g, 0.01 mol) and maleic acid (1.16 g, 0.01 mol) were dissolved in hot N,N-dimethylformamide solution and stirred over a heating magnetic stirrer for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Colourless irregular crystals of the title compound (m. p.: 428–433 K) appeared after a few days.

S3. Refinement

H1 and H1S were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å, 0.98Å (CH) or 0.97Å (CH₂). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂) or 1.5 (OH) times U_{eq} of the parent atom.

Figure 1

View of the asymmetric unit of (I) showing 30% probability displacement ellipsoids. Dashed lines indicate N1—H1…O3S intermolecular and O1S—H1S…O4S intramolecular hydrogen bond interactions.

Figure 2

Molecular packing for (I) viewed along the *b* axis. Dashed lines indicate inter and intra molecular hydrogen bonds and weak C—H \cdots O interactions linking the ions into [100] chains.

4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium hydrogen maleate

F(000) = 1096

 $\theta = 4.0-72.3^{\circ}$ $\mu = 0.79 \text{ mm}^{-1}$

T = 173 K

 $D_{\rm x} = 1.286 {\rm Mg} {\rm m}^{-3}$

Irregular, colourless

 $0.42 \times 0.38 \times 0.26 \text{ mm}$

Cu K α radiation, $\lambda = 1.5418$ Å

Cell parameters from 6479 reflections

Crystal data

 $C_{26}H_{27}F_{2}N_{2}^{+}C_{4}H_{3}O_{4}^{-}$ $M_{r} = 520.56$ Monoclinic, $P2_{1}/c$ a = 22.1215 (5) Å b = 10.8620 (2) Å c = 11.3215 (2) Å $\beta = 98.879$ (2)° V = 2687.77 (9) Å³ Z = 4

Data collection

Duiu concenton	
Agilent Xcalibur (Eos, Gemini) diffractometer	$T_{\min} = 0.871, T_{\max} = 1.000$ 17207 measured reflections
Radiation source: Enhance (Cu) X-ray Source	5260 independent reflections
Graphite monochromator	4484 reflections with $I > 2\sigma(I)$
Detector resolution: 16.0416 pixels mm ⁻¹	$R_{\rm int} = 0.040$
ω scans	$\theta_{\rm max} = 72.5^{\circ}, \theta_{\rm min} = 4.1^{\circ}$
Absorption correction: multi-scan	$h = -24 \rightarrow 27$
(CrysAlis PRO and CrysAlis RED; Agilent,	$k = -12 \rightarrow 13$
2012)	$l = -13 \rightarrow 8$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 0.7817P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
5260 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
344 parameters	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min}$ = -0.22 e Å ⁻³
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL2012</i> (Sheldrick 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.0021 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.87928 (7)	-0.24891 (14)	0.47740 (13)	0.0848 (5)	
F2	0.98166 (6)	0.06251 (14)	1.26090 (10)	0.0727 (4)	
N1	0.68788 (6)	0.32014 (12)	0.73573 (11)	0.0319 (3)	
H1	0.7039	0.3791	0.6926	0.038*	
N2	0.79790 (5)	0.17520 (11)	0.79037 (10)	0.0280 (3)	
C1	0.72463 (8)	0.31929 (15)	0.85715 (13)	0.0363 (4)	
H1A	0.7093	0.2563	0.9055	0.044*	

H1B	0.7211	0.3983	0.8954	0.044*
C2	0.79108 (7)	0.29391 (14)	0.84796 (13)	0.0332 (3)
H2A	0.8066	0.3588	0.8021	0.040*
H2B	0.8150	0.2938	0.9274	0.040*
C3	0.76221 (7)	0.17749 (14)	0.67002 (12)	0.0306 (3)
H3A	0.7669	0.0997	0.6303	0.037*
H3B	0.7773	0.2425	0.6236	0.037*
C4	0.69533 (7)	0.19923 (14)	0.67663 (13)	0.0330 (3)
H4A	0.6720	0.1992	0.5967	0.040*
H4B	0.6799	0.1336	0.7218	0.040*
C5	0.62138 (8)	0.35276 (17)	0.73677 (15)	0.0411 (4)
H5A	0.5996	0.2815	0.7601	0.049*
H5B	0.6185	0.4179	0.7942	0.049*
C6	0.59335 (8)	0.39422 (18)	0.61479 (16)	0.0445 (4)
H6	0.6034	0 4726	0.5911	0.053*
C7	0.55601 (8)	0 32949 (17)	0.53891 (18)	0.0470(4)
е, Н7	0.5435	0.2535	0.5645	0.056*
C8	0.53185 (8)	0.2555	0.41482 (16)	0.030 0.0433(4)
C9	0.33103(0) 0.47868(9)	0.30771(17) 0.31385(18)	0.41402(10) 0.35702(10)	0.0495(4)
НО	0.4588	0.2557	0.3084	0.0490 (4)
C10	0.45461(0)	0.2337 0.3450(2)	0.3984 0.2417 (2)	0.059
U10	0.43401 (9)	0.3450 (2)	0.2417(2) 0.2051	0.0579(5)
C11	0.4180 0.48338(10)	0.3083 0.4203(2)	0.2031 0.18018 (18)	0.009°
	0.46558 (10)	0.4293 (2)	0.10010 (10)	0.0504 (5)
ПП С12	0.4009	0.4303	0.1025 0.22452(10)	0.008°
C12	0.53710 (10)	0.48277 (19)	0.23452 (19)	0.0565 (5)
H12	0.5575	0.5392	0.1927	0.068^{*}
	0.56108 (9)	0.45259 (18)	0.35134 (18)	0.0501 (4)
H13	0.5971	0.4896	0.38/6	0.060*
CI4	0.86369 (7)	0.14809 (13)	0.79043 (13)	0.0287 (3)
H14	0.8825	0.2201	0.7587	0.034*
C15	0.87072 (6)	0.03898 (14)	0.70972 (13)	0.0292 (3)
C16	0.84983 (8)	-0.07710 (15)	0.73468 (15)	0.0378 (4)
H16	0.8335	-0.0896	0.8046	0.045*
C17	0.85290 (9)	-0.17466 (17)	0.65714 (18)	0.0486 (4)
H17	0.8386	-0.2523	0.6738	0.058*
C18	0.87752 (9)	-0.15360 (19)	0.55528 (18)	0.0528 (5)
C19	0.90001 (9)	-0.0420(2)	0.52802 (16)	0.0502 (5)
H19	0.9173	-0.0313	0.4589	0.060*
C20	0.89645 (7)	0.05539 (16)	0.60644 (14)	0.0377 (4)
H20	0.9115	0.1323	0.5895	0.045*
C21	0.89532 (7)	0.12623 (13)	0.91779 (13)	0.0298 (3)
C22	0.95568 (7)	0.16234 (15)	0.95284 (15)	0.0384 (4)
H22	0.9765	0.2017	0.8983	0.046*
C23	0.98534 (8)	0.14033 (19)	1.06856 (17)	0.0490 (5)
H23	1.0258	0.1644	1.0919	0.059*
C24	0.95369 (9)	0.08262 (18)	1.14703 (15)	0.0468 (4)
C25	0.89418 (8)	0.04536 (16)	1.11636 (15)	0.0419 (4)
H25	0.8738	0.0058	1.1716	0.050*

C26	0.86487 (7)	0.06801 (15)	1.00075 (13)	0.0345 (3)	
H26	0.8244	0.0439	0.9786	0.041*	
O1S	0.67312 (8)	0.83923 (13)	0.66302 (12)	0.0604 (4)	
H1S	0.6848	0.7679	0.6735	0.091*	
O2S	0.65899 (8)	0.97228 (12)	0.51543 (12)	0.0589 (4)	
O3S	0.72834 (6)	0.47153 (13)	0.57335 (13)	0.0561 (4)	
O4S	0.70541 (8)	0.62367 (13)	0.68757 (11)	0.0600 (4)	
C1S	0.67577 (8)	0.87144 (16)	0.55309 (15)	0.0411 (4)	
C2S	0.70000 (8)	0.78300 (16)	0.47107 (14)	0.0400 (4)	
H2S	0.7043	0.8161	0.3971	0.048*	
C3S	0.71654 (8)	0.66586 (16)	0.48435 (15)	0.0406 (4)	
H3S	0.7298	0.6303	0.4182	0.049*	
C4S	0.71709 (8)	0.58175 (17)	0.58972 (16)	0.0410 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0965 (11)	0.0745 (9)	0.0831 (10)	0.0137 (8)	0.0126 (8)	-0.0504 (8)
F2	0.0663 (8)	0.1044 (11)	0.0390 (6)	0.0294 (7)	-0.0186 (5)	-0.0032 (6)
N1	0.0355 (7)	0.0320 (7)	0.0284 (6)	0.0097 (5)	0.0059 (5)	0.0009 (5)
N2	0.0315 (6)	0.0274 (6)	0.0241 (6)	0.0060 (5)	0.0014 (5)	-0.0013 (5)
C1	0.0445 (9)	0.0383 (8)	0.0256 (7)	0.0111 (7)	0.0034 (6)	-0.0052 (6)
C2	0.0402 (8)	0.0310 (8)	0.0271 (7)	0.0067 (6)	0.0008 (6)	-0.0050 (6)
C3	0.0352 (8)	0.0316 (7)	0.0241 (7)	0.0072 (6)	0.0020 (6)	-0.0041 (5)
C4	0.0351 (8)	0.0330 (8)	0.0297 (8)	0.0076 (6)	0.0010 (6)	-0.0045 (6)
C5	0.0374 (9)	0.0461 (9)	0.0414 (9)	0.0136 (7)	0.0108 (7)	-0.0006 (7)
C6	0.0380 (9)	0.0456 (10)	0.0499 (10)	0.0139 (7)	0.0062 (8)	-0.0011 (8)
C7	0.0431 (10)	0.0419 (10)	0.0575 (11)	0.0018 (7)	0.0128 (8)	0.0039 (8)
C8	0.0402 (9)	0.0437 (9)	0.0462 (10)	0.0112 (7)	0.0071 (7)	-0.0011 (7)
C9	0.0452 (10)	0.0438 (10)	0.0606 (12)	0.0033 (8)	0.0110 (9)	-0.0039 (8)
C10	0.0440 (10)	0.0640 (13)	0.0622 (12)	0.0092 (9)	-0.0027 (9)	-0.0222 (10)
C11	0.0629 (13)	0.0612 (13)	0.0429 (10)	0.0279 (10)	0.0016 (9)	-0.0051 (9)
C12	0.0714 (14)	0.0420 (10)	0.0583 (12)	0.0101 (9)	0.0170 (10)	0.0076 (9)
C13	0.0463 (10)	0.0471 (10)	0.0557 (11)	-0.0010 (8)	0.0040 (8)	-0.0049 (8)
C14	0.0313 (7)	0.0256 (7)	0.0296 (7)	0.0016 (5)	0.0058 (6)	0.0018 (5)
C15	0.0284 (7)	0.0304 (7)	0.0276 (7)	0.0068 (6)	0.0003 (5)	0.0003 (6)
C16	0.0425 (9)	0.0316 (8)	0.0394 (8)	0.0040 (7)	0.0070 (7)	-0.0025 (6)
C17	0.0504 (10)	0.0337 (9)	0.0591 (11)	0.0052 (7)	0.0007 (9)	-0.0101 (8)
C18	0.0516 (11)	0.0530 (11)	0.0509 (11)	0.0156 (9)	-0.0015 (8)	-0.0254 (9)
C19	0.0497 (10)	0.0682 (13)	0.0337 (9)	0.0147 (9)	0.0092 (7)	-0.0096 (8)
C20	0.0370 (8)	0.0439 (9)	0.0324 (8)	0.0065 (7)	0.0054 (6)	0.0021 (7)
C21	0.0318 (7)	0.0256 (7)	0.0311 (7)	0.0045 (6)	0.0018 (6)	-0.0035 (6)
C22	0.0319 (8)	0.0391 (9)	0.0434 (9)	0.0023 (6)	0.0040 (7)	-0.0071 (7)
C23	0.0321 (8)	0.0586 (11)	0.0520 (10)	0.0084 (8)	-0.0072 (8)	-0.0149 (9)
C24	0.0474 (10)	0.0564 (11)	0.0319 (8)	0.0223 (8)	-0.0090 (7)	-0.0075 (7)
C25	0.0505 (10)	0.0432 (9)	0.0310 (8)	0.0126 (7)	0.0034 (7)	0.0023 (7)
C26	0.0358 (8)	0.0350 (8)	0.0313 (8)	0.0020 (6)	0.0003 (6)	0.0007 (6)
O1S	0.0998 (12)	0.0472 (8)	0.0383 (7)	-0.0015 (7)	0.0241 (7)	-0.0015 (6)

supporting information

O2S	0.0891 (11)	0.0335 (7)	0.0551 (8)	-0.0014 (7)	0.0143 (7)	0.0013 (6)
O3S	0.0599 (8)	0.0490 (8)	0.0651 (9)	0.0202 (6)	0.0275 (7)	0.0206 (6)
O4S	0.0962 (12)	0.0536 (8)	0.0317 (6)	0.0022 (8)	0.0142 (7)	0.0111 (6)
C1S	0.0502 (10)	0.0368 (9)	0.0362 (8)	-0.0123 (7)	0.0061 (7)	-0.0007 (7)
C2S	0.0497 (10)	0.0432 (9)	0.0278 (8)	-0.0045 (7)	0.0084 (7)	0.0065 (7)
C3S	0.0455 (9)	0.0461 (10)	0.0323 (8)	0.0034 (7)	0.0122 (7)	0.0056 (7)
C4S	0.0361 (8)	0.0469 (10)	0.0411 (9)	0.0041 (7)	0.0092 (7)	0.0126 (7)

Geometric parameters (Å, °)

F1	1.364 (2)	C12—C13	1.386 (3)
F2—C24	1.3589 (19)	С13—Н13	0.9300
N1—H1	0.9101	C14—H14	0.9800
N1—C1	1.4851 (19)	C14—C15	1.519 (2)
N1—C4	1.4945 (18)	C14—C21	1.521 (2)
N1—C5	1.5150 (19)	C15—C16	1.387 (2)
N2—C2	1.4632 (18)	C15—C20	1.389 (2)
N2—C3	1.4657 (17)	C16—H16	0.9300
N2	1.4848 (18)	C16—C17	1.384 (2)
C1—H1A	0.9700	С17—Н17	0.9300
C1—H1B	0.9700	C17—C18	1.368 (3)
C1—C2	1.515 (2)	C18—C19	1.364 (3)
C2—H2A	0.9700	С19—Н19	0.9300
C2—H2B	0.9700	C19—C20	1.391 (2)
С3—НЗА	0.9700	С20—Н20	0.9300
С3—Н3В	0.9700	C21—C22	1.390 (2)
C3—C4	1.512 (2)	C21—C26	1.390 (2)
C4—H4A	0.9700	С22—Н22	0.9300
C4—H4B	0.9700	C22—C23	1.392 (2)
С5—Н5А	0.9700	С23—Н23	0.9300
С5—Н5В	0.9700	C23—C24	1.365 (3)
C5—C6	1.493 (2)	C24—C25	1.370 (3)
С6—Н6	0.9300	С25—Н25	0.9300
C6—C7	1.302 (3)	C25—C26	1.390 (2)
С7—Н7	0.9300	С26—Н26	0.9300
C7—C8	1.483 (3)	O1S—H1S	0.8199
C8—C9	1.381 (3)	O1S—C1S	1.303 (2)
C8—C13	1.389 (3)	O2S—C1S	1.213 (2)
С9—Н9	0.9300	O3S—C4S	1.243 (2)
C9—C10	1.383 (3)	O4S—C4S	1.261 (2)
C10—H10	0.9300	C1S—C2S	1.492 (2)
C10-C11	1.366 (3)	C2S—H2S	0.9300
C11—H11	0.9300	C2S—C3S	1.326 (2)
C11—C12	1.379 (3)	C3S—H3S	0.9300
С12—Н12	0.9300	C3S—C4S	1.501 (2)
C1—N1—H1	107.4	C13—C12—H12	119.9
C1—N1—C4	109.06 (11)	C8—C13—H13	119.6

C1—N1—C5	112.81 (12)	C12—C13—C8	120.71 (19)
C4—N1—H1	107.4	С12—С13—Н13	119.6
C4—N1—C5	112.53 (13)	N2—C14—H14	108.3
C5—N1—H1	107.4	N2—C14—C15	110.23 (12)
C2—N2—C3	108.75 (11)	N2—C14—C21	109.81 (11)
C2—N2—C14	110.06 (12)	C15—C14—H14	108.3
C3—N2—C14	113.02 (11)	C15—C14—C21	111.94 (11)
N1—C1—H1A	109.7	C21—C14—H14	108.3
N1—C1—H1B	109.7	C16—C15—C14	121.22 (13)
N1—C1—C2	109.63 (12)	C16—C15—C20	118.75 (14)
H1A—C1—H1B	108.2	C20—C15—C14	119.98 (14)
C2—C1—H1A	109.7	C15—C16—H16	119.5
C2—C1—H1B	109.7	C17—C16—C15	121.07 (16)
N2—C2—C1	111.03 (13)	C17—C16—H16	119.5
N2-C2-H2A	109.4	С16—С17—Н17	120.9
N2-C2-H2B	109.4	C18 - C17 - C16	118 12 (18)
C1 - C2 - H2A	109.4	C18 - C17 - H17	120.9
C1 C2 H2B	109.4	E1 C18 C17	120.9 118.2 (2)
H_{2}^{2} H_{2}^{2} H_{2}^{2} H_{2}^{2}	109.4	C10 C18 F1	118.2(2)
$M_2 = C_2 = H_2 \Lambda$	100.6	$C_{19} = C_{18} = C_{17}$	110.71(19) 122.00(16)
$N_2 = C_3 = H_2 P$	109.0	C19 - C10 - C17	123.09 (10)
$N_2 = C_3 = C_4$	109.0	$C_{10} = C_{10} = C_{10}$	120.3
$N_2 = C_3 = C_4$	110.34 (11)	$C_{10} = C_{10} = C_{20}$	118.22 (17)
$H_{3}A = C_{3} = H_{3}B$	108.1	C15 C20 C10	120.9
C4 - C3 - H3A	109.6	C15 - C20 - C19	120./1 (1/)
С4—С3—Н3В	109.6	С15—С20—Н20	119.6
N1—C4—C3	109.62 (12)	С19—С20—Н20	119.6
N1—C4—H4A	109.7	C22—C21—C14	120.52 (14)
N1—C4—H4B	109.7	C26—C21—C14	120.78 (13)
C3—C4—H4A	109.7	C26—C21—C22	118.69 (14)
C3—C4—H4B	109.7	C21—C22—H22	119.6
H4A—C4—H4B	108.2	C21—C22—C23	120.84 (16)
N1—C5—H5A	109.8	C23—C22—H22	119.6
N1—C5—H5B	109.8	С22—С23—Н23	120.8
H5A—C5—H5B	108.3	C24—C23—C22	118.47 (16)
C6—C5—N1	109.17 (13)	С24—С23—Н23	120.8
С6—С5—Н5А	109.8	F2—C24—C23	119.13 (17)
С6—С5—Н5В	109.8	F2—C24—C25	118.18 (18)
С5—С6—Н6	117.4	C23—C24—C25	122.68 (16)
C7—C6—C5	125.30 (19)	С24—С25—Н25	120.8
С7—С6—Н6	117.4	C24—C25—C26	118.47 (17)
С6—С7—Н7	117.5	C26—C25—H25	120.8
C6-C7-C8	124 96 (18)	$C_{21} = C_{26} = C_{25}$	120.85 (15)
C8-C7-H7	117 5	$C_{21} = C_{26} = H_{26}$	119.6
$C_{0} - C_{8} - C_{7}$	118 67 (18)	C_{25} C_{26} H_{26}	119.6
C_{9} C_{8} C_{13}	118 10 (18)	C1S = 01S = H1S	109.4
C_{13} C_{8} C_{7}	123 21 (17)	015 - 015 - 015	110.68 (16)
$C_{1} = C_{0} = C_{1}$	123.21 (17)	015 - 015 - 025	117.00(10) 121.46(17)
$C_{0} = C_{0} = C_{10}$	117.J	025 - 015 - 015	121.40(17)
しる―し9―し10	121.01 (19)	025-015-025	118.86 (16)

С10—С9—Н9	119.5	C1S—C2S—H2S	114.1
С9—С10—Н10	119.7	C3S—C2S—C1S	131.80 (15)
С11—С10—С9	120.5 (2)	C3S—C2S—H2S	114.1
C11—C10—H10	119.7	C2S—C3S—H3S	115.0
C10—C11—H11	120.3	C2S—C3S—C4S	129.96 (16)
C10-C11-C12	119.48 (19)	C4S—C3S—H3S	115.0
C12—C11—H11	120.3	O3S—C4S—O4S	123.50 (16)
C11—C12—H12	119.9	O3S—C4S—C3S	116.43 (16)
C11—C12—C13	120.2 (2)	O4S—C4S—C3S	120.06 (16)
	~ /		
F1-C18-C19-C20	178.26 (17)	C13—C8—C9—C10	-1.1(3)
F2-C24-C25-C26	178.65 (15)	C14—N2—C2—C1	-175.83 (12)
N1—C1—C2—N2	-59.35 (16)	C14—N2—C3—C4	177.21 (12)
N1—C5—C6—C7	104.8 (2)	C14—C15—C16—C17	175.99 (15)
N2—C3—C4—N1	60.33 (16)	C14—C15—C20—C19	-176.28 (15)
N2-C14-C15-C16	-63.63 (17)	C14—C21—C22—C23	-178.65 (14)
N2-C14-C15-C20	113.99 (15)	C14—C21—C26—C25	178.47 (14)
N2-C14-C21-C22	-145.85 (14)	C15-C14-C21-C22	91.37 (16)
N2-C14-C21-C26	35.24 (18)	C_{15} C_{14} C_{21} C_{26}	-87.53(17)
C1-N1-C4-C3	-58.52 (16)	C_{15} C_{16} C_{17} C_{18}	0.4 (3)
C1—N1—C5—C6	160.42 (14)	C16—C15—C20—C19	1.4 (2)
$C_{2}-N_{2}-C_{3}-C_{4}$	-60.26(16)	C_{16} C_{17} C_{18} F_{1}	-178.50(17)
$C_2 = N_2 = C_1 $	-168.65(11)	C_{16} C_{17} C_{18} C_{19}	1.2 (3)
$C_2 = N_2 = C_1 + C_2 $	67 58 (14)	C_{17} C_{18} C_{19} C_{20}	-14(3)
$C_{3}-N_{2}-C_{2}-C_{1}$	59.86 (15)	C_{18} C_{19} C_{20} C_{15} C_{20} C_{15}	01(3)
$C_3 = N_2 = C_1 $	-46.84(15)	C_{20} C_{15} C_{20} C_{15} C_{16} C_{17}	-1.7(2)
$C_3 = N_2 = C_1 4 = C_2 1$	-170.62(12)	C_{21} C_{14} C_{15} C_{16}	58 90 (18)
C4-N1-C1-C2	57 71 (16)	C_{21} C_{14} C_{15} C_{20}	-12348(15)
C4-N1-C5-C6	-75.65(17)	$C_{21} - C_{22} - C_{23} - C_{24}$	-0.1(3)
$C_{5}-N_{1}-C_{1}-C_{2}$	-17647(13)	C^{22} C^{21} C^{22} C^{23} C^{25} C^{21}	-0.5(2)
C_{5} N1 C_{4} C_{3}	175 51 (12)	$C_{22} = C_{23} = C_{24} = F_{23}$	-178 81 (15)
C_{5} C_{6} C_{7} C_{8}	-175.39(15)	$C_{22} = C_{23} = C_{24} = C_{25}$	0.2(3)
C6-C7-C8-C9	-15861(19)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-0.4(3)
C6-C7-C8-C13	23.4(3)	$C_{23} = C_{24} = C_{25} = C_{26} = C_{21}$	0.4(3)
$C_{7} = C_{8} = C_{13}$	-170 18 (17)	$C_{24} = C_{23} = C_{20} = C_{21}$	0.3(2)
$C_7 = C_8 = C_{13} = C_{10}$	179.10(17)	015 015 025 025 025	6.3(2)
$C_{1} = C_{1} = C_{1} = C_{1}$	1/6.31(17)	013 - 013 - 023 - 035	(3, 3, 3)
$C_0 = C_2 = C_{10} = C_{11}$	0.0(3)	C_{25} C_{15} C_{25} C_{35} C_{45}	-0.0(3)
C_{7} C_{10} C_{11} C_{12}	0.5(3)	$C_{15} = C_{25} = C_{35} = C_{45}$	0.9(3)
$C_{10} = C_{10} = C_{11} = C_{12} = C_{12}$	(3)	$C_{25} = C_{25} = C_{45} = C_{25}$	-6.6(2)
C10-C11-C12-C13	-1.1(3)	U23-U33-U43-U43	-0.0 (3)
C11 - C12 - C13 - C8	0.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1 <i>S</i> —H1 <i>S</i> ···O4 <i>S</i>	0.82	1.63	2.451 (2)	177
N1—H1···O3S	0.91	1.83	2.7190 (18)	165
$C1$ — $H1B$ ···O2 S^{i}	0.97	2.51	3.354 (2)	146

supporting information

C26—H26····O3 <i>S</i> ⁱⁱ	0.93	2.53	3.278 (2)	138	
C2S— $H2S$ ····O4 S ⁱⁱⁱ	0.93	2.46	3.386 (2)	171	
C23—H23…F1 ^{iv}	0.93	2.53	3.342 (2)	145	

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) x, -y+1/2, z+1/2; (iii) x, -y+3/2, z-1/2; (iv) -x+2, y+1/2, -z+3/2.