

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Bis[(5-aminofuran-2-yl)methyl]-3,4,5,6-tetrahydropyrimidin-1-ium hexafluorophosphate

Mehmet Akkurt,^a Senem Akkoc,^b Yetkin Gök^c and Muhammad Nawaz Tahir^d*

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Faculty of Arts and Sciences, Inönü University, 44280, Malatya, Turkey, and ^dDepartment of Physics, University of Sargodha, Sargodha, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 18 July 2013; accepted 22 July 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.077; wR factor = 0.247; data-toparameter ratio = 11.6.

The asymmetric unit of the title salt, C₁₆H₂₁N₂O₂⁺·PF₆⁻, contains half of the whole ion pair, which has crystallographic mirror symmetry. Two F atoms related by the mirror plane are disordered over two sites of equal occupancy. The dihedral angle between the central ring and the furan ring is 59.3 () $^{\circ}$. In the crystal, the anions and cations are linked through C- $H \cdot \cdot F$ interactions, forming a three-dimensional network.

Related literature

N-heterocyclic carbene (NHC)-metal complexes have attracted much attention, particularly for their functions in catalytic reactions, see: Akkoç & Gök (2013); Arduengo et al. (1992); Bagherzadeh et al. (2012); Hermann (2002); Lee et al. (2013); Saba et al. (1991); Yiğit et al. (2007); Özdemir et al. (2001); Çetinkaya et al. (1997). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

 $C_{16}H_{21}N_2O_2^+ \cdot PF_6^ M_r = 418.32$ Monoclinic, P21/m a = 6.0793 (6) Å b = 18.879 (2) Å c = 8.5750 (9) Å $\beta = 100.747 \ (5)^{\circ}$

 $V = 966.90 (17) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^-$ T = 296 K $0.35 \times 0.28 \times 0.23 \text{ mm}$ organic compounds

1677 measured reflections

 $R_{\rm int} = 0.000$

1677 independent reflections

1089 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995) $T_{\min} = 0.932, \ T_{\max} = 0.953$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	144 parameters
$wR(F^2) = 0.247$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
1677 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots F2^{i}$	0.93	2.40	3.312 (8)	167
$C1-H1\cdots F4^{ii}$	0.93	2.52	3.044 (8)	116

Symmetry codes: (i) x, y, z - 1; (ii) x - 1, y, z - 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5332).

References

- Akkoç, S. & Gök, Y. (2013). J. Coord. Chem. 66, 1396-1404.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Arduengo, A. J., Rasika, H. V., Harlow, R. L. & Kline, M. J. (1992). J. Am. Chem. Soc. 114, 5530-5534.
- Bagherzadeh, M., Amini, M., Ellero, A. & Woo, L. K. (2012). Inorg. Chim. Acta, 383, 46-51.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Çetinkaya, B., Özdemir, İ., Bruneau, C. & Dixneuf, P. H. (1997). J. Mol. Catal. A Chem. 118, L1-L4.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hermann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
- Lee, C. S., Lai, Y. B., Lin, W. J., Zhuang, R. R. & Hwang, W. S. (2013). J. Organomet. Chem. 724, 235-243.
- Özdemir, İ., Yiğit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arıcı, C. (2001). J. Organomet. Chem. 633, 27-32
- Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
- Saba, S., Brescia, A. & Kaloustian, M. K. (1991). Tetrahedron Lett. 32, 5031-5034.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yiğit, M., Özdemir, İ., Çetinkaya, E. & Çetinkaya, B. (2007). Transition Met. Chem. 32, 536-540.

supporting information

Acta Cryst. (2013). E69, o1325 [doi:10.1107/S1600536813020187]

1,3-Bis[(5-aminofuran-2-yl)methyl]-3,4,5,6-tetrahydropyrimidin-1-ium hexa-fluorophosphate

Mehmet Akkurt, Senem Akkoç, Yetkin Gök and Muhammad Nawaz Tahir

S1. Comment

1,3-Di(5-methylfurfuryl)pyrimidinium hexafluorophosphate salt is conventional N-heterocyclic carbene (NHC) precursors. N-heterocyclic carbenes (NHCs) are generally considered as analogues of phosphine ligands because of their good s-donating but very weak *p*-accepting ability (Arduengo *et al.*, 1992). Normally, NHC-metal complexes have higher stability toward heat, moisture, and oxygen than phosphine metal based complexes, which makes them quite attractive as phosphine substitute. In recent years, NHCs are fully used as organocatalysts and ancillary ligands in transition metal catalyzed reactions (Hermann, 2002). They have attracted many attention, particularly for its functions in catalytic reactions (Akkoç & Gök, 2013; Lee *et al.*, 2013; Bagherzadeh *et al.*, 2012; Çetinkaya *et al.*, 1997; Özdemir *et al.*, 2001; Saba *et al.*, 1991; Yiğit *et al.*, 2007).

Fig. 1 shows the whole molecule (I) whose anions and cations form two parts with a crystallographic mirror symmetry. The C1–N1–C2–C3, C1–N1–C4–C5, C2–N1–C4–C5, N1–C4–C5–O1 and N1–C4–C5–C6 torsion angles are -25.1 (6), -121.5 (4), 60.4 (5), -85.1 (4) and 96.4 (6) °, respectively. All bond lengths of (I) are within *normal* values (Allen *et al.*, 1987).

The crystal structure is stabilized by C—H···F interactions between the anions and cations of (I), forming a three dimensional network (Table 1, Figures 2 and 3).

S2. Experimental

The reaction for the preparation of heterocyclic salt containing furan moiety was carried out under argon in flame dried glassware using standard Schlenk type flasks. The synthesis of salt containing furan moiety was achieved by the reaction of N,N'-dialkylpropane-1,3-diamine (1.0 mmol) with ammonium hexafluorophosphate (1.0 mmol) in triethyl orthoformate (5 ml) (Scheme 1). The reaction mixture was heated for 12 h at 353 K. A white solid was precipitated. The precipitation was then crystallized from Et₂O/EtOH (2:1) at room temperature. The resulting 1,3-di(5-methyl-furfuryl)pyrimidinium hexafluorophosphate salt was obtained in good yield.

S3. Refinement

All H atoms were positioned geometrically and refined by using a riding model, with C—H = 0.93 - 0.97 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The one fluoride atom of the hexafluorophosphate group are disordered over two sites as F5 and F6 in Fig. 1, with equal occupancies of 0.5. Mirror symmetry transformation generates the other equivalent disordered atoms (F5a and F6a in Fig. 1).

Figure 1

View of the title compound with a crystallographic mirror symmetry. Displacement ellipsoids are shown at the 20% probability levels. The disordered F5, F6 and F5a, F5b atoms are related to each other with a mirror symmetry operation. Symmetry codes: (*a*) x, 1/2 - y, z; (*b*) x, 1/2 - y, z.

Figure 2

View of the crystal packing and the hydrogen bonding of (I) along *a* axis. H atoms not involved in hydrogen bonding are omitted for clarity.

Figure 3

View of the crystal packing and the hydrogen bonding of (I) along c axis. H atoms not involved in hydrogen bonding are omitted for clarity.

1,3-Bis[(5-aminofuran-2-yl)methyl]-3,4,5,6-tetrahydropyrimidin-1-ium hexafluorophosphate

Crystal data

C₁₆H₂₁N₂O₂⁺·PF₆⁻ $M_r = 418.32$ Monoclinic, $P2_1/m$ Hall symbol: -P 2yb a = 6.0793 (6) Å b = 18.879 (2) Å c = 8.5750 (9) Å $\beta = 100.747$ (5)° V = 966.90 (17) Å³ Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: part of the refinement model (ΔF) (*XABS2*; Parkin *et al.*, 1995) $T_{\min} = 0.932, T_{\max} = 0.953$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.247$ S = 1.081677 reflections 144 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 432 $D_x = 1.437 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1100 reflections $\theta = 2.5-25^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.35 \times 0.28 \times 0.23 \text{ mm}$

1677 measured reflections 1677 independent reflections 1089 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 24.7^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -7 \rightarrow 7$ $k = 0 \rightarrow 22$ $l = 0 \rightarrow 10$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1389P)^2 + 0.421P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.55$ e Å⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ Occ. (<1) х Zy 01 0.0808 (11) 0.0509(5)0.46898 (16) 0.2298(3)N1 0.0706 (11) -0.1021(5)0.31127 (19) 0.1262(4)C1 -0.0850(8)0.25000 0.0606 (6) 0.069(2)C2 0.0872 (17) -0.1511(9)0.3154 (3) 0.2862 (5) C3 -0.2709(14)0.25000 0.3206 (9) 0.106(3)C4 -0.0792(7)0.3771 (2) 0.0383(5)0.0817 (16) C5 0.1016(7) 0.4235 (2) 0.1168 (5) 0.0725 (16) C6 0.3108 (8) 0.4325(3)0.1001 (6) 0.091(2)C7 0.4019 (9) 0.4871(3)0.2040(6) 0.094(2)C8 0.2431(9)0.5075(3)0.2828(5)0.0852(17)C9 0.2247 (12) 0.4039(7) 0.5625(3)0.120(3)P1 0.3506(2)0.25000 0.73427 (19) 0.0793(7)F1 0.3265 (10) 0.25000 0.5584 (6) 0.247 (6) F2 0.0993 (9) 0.25000 0.7207 (8) 0.236(6) F3 0.3704(10)0.25000 0.9155(7) 0.218(5)F4 0.6000(9)0.25000 0.7399 (8) 0.260(7)F5 0.500 0.449(3)0.3183 (5) 0.7947 (15) 0.204(7)F6 0.258(3)0.3213(5)0.699(2)0.260(8)0.500 H1-0.058100.25000 -0.042600.0820* H2A -0.243300.35660 0.29500 0.1050* H2B -0.012700.32020 0.36270 0.1050* H₃A -0.284900.25000 0.43150 0.1280* H3B -0.420500.25000 0.25680 0.1280* H4A -0.051800.36490 -0.066300.0980* H4B -0.219400.40290 0.02440 0.0980* H6 0.38470 0.40730 0.03220 0.1090* H7 0.54600 0.50550 0.21560 0.1130* H9A 0.36010 0.58990 0.42480 0.1800* H9B 0.20190 0.54010 0.50010 0.1800* H9C 0.10040 0.59310 0.36490 0.1800*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0858 (19)	0.098 (2)	0.0648 (18)	0.0177 (16)	0.0303 (14)	0.0102 (15)
N1	0.070 (2)	0.094 (2)	0.0496 (19)	0.0089 (16)	0.0162 (14)	0.0031 (17)

supporting information

C1	0.050 (3)	0.108 (5)	0.048 (3)	0.0000	0.008 (2)	0.0000
C2	0.104 (3)	0.107 (3)	0.057 (3)	0.013 (3)	0.032 (2)	0.000 (2)
C3	0.113 (5)	0.148 (7)	0.071 (4)	0.0000	0.052 (4)	0.0000
C4	0.085 (3)	0.102 (3)	0.058 (2)	0.027 (2)	0.013 (2)	0.014 (2)
C5	0.085 (3)	0.080 (3)	0.057 (2)	0.025 (2)	0.025 (2)	0.0179 (19)
C6	0.088 (3)	0.101 (4)	0.094 (4)	0.021 (2)	0.042 (3)	0.017 (3)
C7	0.087 (3)	0.102 (4)	0.098 (4)	-0.003 (3)	0.031 (3)	0.018 (3)
C8	0.105 (3)	0.086 (3)	0.067 (3)	0.005 (3)	0.022 (2)	0.020 (2)
C9	0.170 (6)	0.112 (4)	0.083 (4)	-0.004 (4)	0.039 (4)	0.000 (3)
P1	0.0552 (9)	0.1200 (15)	0.0645 (11)	0.0000	0.0157 (7)	0.0000
F1	0.104 (4)	0.578 (18)	0.065 (3)	0.0000	0.030 (3)	0.0000
F2	0.077 (3)	0.516 (17)	0.121 (5)	0.0000	0.036 (3)	0.0000
F3	0.111 (4)	0.449 (14)	0.094 (4)	0.0000	0.023 (3)	0.0000
F4	0.071 (3)	0.59 (2)	0.116 (5)	0.0000	0.012 (3)	0.0000
F5	0.291 (15)	0.108 (6)	0.199 (11)	-0.077 (8)	0.013 (10)	-0.036 (6)
F6	0.242 (13)	0.114 (7)	0.36 (2)	0.065 (7)	-0.111 (14)	0.018 (9)

Geometric parameters (Å, °)

P1—F6 ⁱ	1.469 (11)	C5—C6	1.317 (7)
P1—F1	1.488 (5)	C6—C7	1.407 (8)
P1—F2	1.510 (6)	C7—C8	1.334 (8)
P1—F3	1.536 (6)	C8—C9	1.487 (8)
P1—F4	1.508 (6)	C1—H1	0.9300
P1—F5	1.474 (11)	C2—H2B	0.9700
P1—F6	1.469 (11)	C2—H2A	0.9700
P1—F5 ⁱ	1.474 (11)	С3—НЗА	0.9700
F5—F6	1.29 (2)	С3—Н3В	0.9700
01—C5	1.372 (5)	C4—H4A	0.9700
O1—C8	1.379 (6)	C4—H4B	0.9700
N1C2	1.459 (6)	С6—Н6	0.9300
N1C4	1.474 (5)	С7—Н7	0.9300
N1C1	1.299 (4)	С9—Н9С	0.9600
C2—C3	1.491 (7)	С9—Н9А	0.9600
C4—C5	1.467 (6)	С9—Н9В	0.9600
F4—P1—F5 ⁱ	69.5 (7)	N1—C4—C5	113.8 (3)
$F4 - P1 - F6^{i}$	110.6 (7)	O1—C5—C6	110.2 (4)
F5—P1—F6	52.1 (9)	C4—C5—C6	133.1 (4)
F5—P1—F5 ⁱ	122.0 (8)	O1—C5—C4	116.7 (4)
$F5 - P1 - F6^{i}$	171.5 (8)	C5—C6—C7	107.4 (5)
F5 ⁱ —P1—F6	171.5 (8)	C6—C7—C8	107.2 (5)
$F6-P1-F6^{i}$	132.9 (9)	O1—C8—C9	115.4 (5)
$F5^{i}$ — $P1$ — $F6^{i}$	52.1 (9)	O1—C8—C7	109.2 (4)
$F2$ — $P1$ — $F5^i$	111.4 (7)	C7—C8—C9	135.3 (6)
$F2$ — $P1$ — $F6^{i}$	69.0 (7)	N1 ⁱ —C1—H1	117.00
F3—P1—F4	94.5 (4)	N1—C1—H1	117.00
F3—P1—F5	72.2 (5)	N1—C2—H2A	110.00

F1—P1—F2	90.9 (4)	С3—С2—Н2В	110.00
F1—P1—F3	178.9 (3)	N1—C2—H2B	110.00
F1—P1—F4	86.6 (4)	C3—C2—H2A	110.00
F1—P1—F5	108.3 (5)	H2A—C2—H2B	108.00
F1—P1—F6	80.2 (7)	C2 ⁱ —C3—H3A	109.00
$F1 - F1 - F5^{i}$	108.3 (5)	С2—С3—НЗА	109.00
$F1 - F6^{i}$	80.2 (7)	С2—С3—Н3В	109.00
F2—P1—F3	88.0 (4)	H3A—C3—H3B	108.00
F2—P1—F4	177.5 (4)	C2 ⁱ —C3—H3B	109.00
F2—P1—F5	111.4 (7)	N1—C4—H4B	109.00
F2—P1—F6	69.0 (7)	N1—C4—H4A	109.00
F4—P1—F5	69.5 (7)	H4A—C4—H4B	108.00
F4—P1—F6	110.6 (7)	C5—C4—H4A	109.00
F3—P1—F5 ⁱ	72.2 (5)	С5—С4—Н4В	109.00
F3—P1—F6 ⁱ	99.4 (7)	С5—С6—Н6	126.00
F3—P1—F6	99.4 (7)	С7—С6—Н6	126.00
P1—F5—F6	63.7 (8)	С8—С7—Н7	126.00
P1—F6—F5	64.2 (8)	С6—С7—Н7	126.00
C5—O1—C8	105.9 (3)	Н9В—С9—Н9С	110.00
C1—N1—C2	120.1 (4)	С8—С9—Н9А	109.00
C2—N1—C4	119.4 (4)	С8—С9—Н9В	110.00
C1—N1—C4	120.5 (4)	С8—С9—Н9С	109.00
N1-C1-N1 ⁱ	125.9 (4)	H9A—C9—H9B	109.00
N1—C2—C3	109.6 (4)	H9A—C9—H9C	109.00
$C2-C3-C2^{i}$	111.9 (6)		
F5 ⁱ —P1—F5—F6	-172.5 (11)	C2-N1-C1-N1 ⁱ	-1.9 (7)
F1—P1—F6—F5	-122.5 (10)	C1—N1—C4—C5	-121.5 (4)
F2—P1—F6—F5	142.8 (11)	$C4$ — $N1$ — $C1$ — $N1^i$	-180.0 (4)
F1—P1—F5—F6	61.1 (11)	C2—N1—C4—C5	60.4 (5)
F2—P1—F5—F6	-37.4 (11)	C1—N1—C2—C3	-25.1 (6)
F3—P1—F5—F6	-117.9 (11)	C4—N1—C2—C3	153.1 (5)
F4—P1—F5—F6	140.1 (11)	$N1-C2-C3-C2^{i}$	51.2 (7)
F3—P1—F6—F5	58.6 (10)	N1-C4-C5-C6	96.4 (6)
F4—P1—F6—F5	-39.9 (11)	N1-C4-C5-O1	-85.1 (4)
F6 ⁱ —P1—F6—F5	170.8 (12)	C4—C5—C6—C7	177.5 (5)
C5—O1—C8—C7	0.9 (5)	O1—C5—C6—C7	-1.1 (6)
C5—O1—C8—C9	178.1 (4)	C5—C6—C7—C8	1.7 (6)
C8—O1—C5—C4	-178.7 (4)	C6—C7—C8—C9	-178.0 (6)
C8—O1—C5—C6	0.2 (5)	C6—C7—C8—O1	-1.6 (6)

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···F2 ⁱⁱ	0.93	2.40	3.312 (8)	167

			supportin	g information
C1—H1…F4 ⁱⁱⁱ	0.93	2.52	3.044 (8)	116
Symmetry codes: (ii) <i>x</i> , <i>y</i> , <i>z</i> –1; (iii) <i>x</i> –1, <i>y</i> , <i>z</i> –1.				