[Journal logo]

Volume 69 
Part 8 
Page o1318  
August 2013  

Received 22 July 2013
Accepted 22 July 2013
Online 27 July 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.034
wR = 0.093
Data-to-parameter ratio = 14.8
Details
Open access

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India,bCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India,cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title compound, C29H21ClN2O, there is a twist in the bridging prop-2-en-1-one group [C=C-C=O torsion angle = 22.7 (2)°]. The quinolinyl residues form a dihedral angle of 86.92 (4)°, indicating an almost perpendicular relationship. In the crystal, supramolecular layers in the bc plane are stabilized by C-H...[pi] and [pi]-[pi] interactions [centroid-centroid distance = 3.4947 (7) Å].

Related literature

For background details and the biological applications of quinolinyl chalcones, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C29H21ClN2O

  • Mr = 448.93

  • Monoclinic, P 21 /c

  • a = 10.9837 (2) Å

  • b = 21.0604 (3) Å

  • c = 9.3927 (1) Å

  • [beta] = 90.009 (1)°

  • V = 2172.73 (6) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 1.75 mm-1

  • T = 100 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.852, Tmax = 1.000

  • 8885 measured reflections

  • 4444 independent reflections

  • 3956 reflections with I > 2[sigma](I)

  • Rint = 0.020

Refinement
  • R[F2 > 2[sigma](F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.03

  • 4444 reflections

  • 300 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.26 e Å-3

  • [Delta][rho]min = -0.35 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and N1,C1,C6-C9 rings, respectively.

D-H...A D-H H...A D...A D-H...A
C13-H13...Cg1i 0.95 2.90 3.5847 (15) 130
C16-H16...Cg2ii 0.95 2.74 3.6060 (14) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5335 ).


Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.  [CrossRef] [ChemPort]
Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.  [Web of Science] [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.  [CSD] [CrossRef] [ChemPort]
Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1318  [ doi:10.1107/S1600536813020229 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.