organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1255-o1256

2,2-Di­phenyl-N-{[2-(tri­fluoro­meth­yl)phen­yl]carbamo­thio­yl}acetamide

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 12 June 2013; accepted 5 July 2013; online 13 July 2013)

The title mol­ecule, C22H17F3N2OS, adopts a transcis conformation with respect to the positions of the carbonyl and tri­fluoro­methyl­benzene groups against the thio­carbonyl group across the C—N bonds. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. The tri­fluoro­methyl-substituted benzene ring forms dihedral angles of 66.05 (9) and 47.19 (9)° with the terminal phenyl rings and is twisted from the O=C—N—(C=S)—N carbonyl­thio­urea plane [maximum deviation = 0.0535 (12) Å], making a dihedral angle of 63.59 (8)°. In the crystal, N—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into a layer parallel to the bc plane. A C—H⋯π inter­action is also observed.

Related literature

For the biological activity of thio­urea derivatives, see: Vankatachalam et al. (2001[Vankatachalam, T. K., Sudbeck, E. A., Mao, C. & Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523-528.]). For related structures, see: Yusof, Arshad et al. (2012[Yusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012). Acta Cryst. E68, o2670.]); Yusof, Embong et al. (2012[Yusof, M. S. M., Embong, N. F., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1029.]); Yusof, Mutalib et al. (2012[Yusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o982.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17F3N2OS

  • Mr = 414.44

  • Orthorhombic, P c a 21

  • a = 20.0318 (4) Å

  • b = 10.2866 (2) Å

  • c = 9.5351 (2) Å

  • V = 1964.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.56 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.987

  • 21265 measured reflections

  • 5618 independent reflections

  • 4608 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.081

  • S = 1.02

  • 5618 reflections

  • 270 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2568 Freidel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.96 (3) 1.93 (2) 2.6237 (19) 127 (2)
N2—H1N2⋯O1i 0.81 (2) 2.04 (2) 2.838 (2) 174 (2)
C9—H9A⋯F1ii 0.95 2.53 3.395 (2) 151
C7—H7ACg1iii 1.00 2.84 3.7826 (19) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recent studies have shown that thiourea derivatives are potential biologically active agents, such as antimicrobials and HIV inhibitors (Vankatachalam et al., 2001). The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Yusof, Arshad et al., 2012; Yusof, Embong et al., 2012; Yusof, Mutalib et al., 2012). The molecule adopts a trans-cis configuration with respect to the positions of diphenylmethane and trifluoromethylbenzene (F1–F3/C16–C22) groups, respectively, to the sulfur (S1) atom across the C—N bond. The trifluoromethyl-substituted benzene ring (C16–C21) forms dihedral angles of 66.05 (9) and 47.19 (9)° with the terminal phenyl rings, C1–C6 and C8–C13, respectively. Furthermore, the trifluoromethylbenzene plane (C16–C22) is slightly twisted from the carbonyl thiourea moiety (S1/O1/N1/N2/C15/C14) with a C15—N1—C16—C21 torsion angle of 119.3 (2)°. In the molecule, an intramolecular N2—H1N2···O1 hydrogen bond forms an S(6) graph-set motif (Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into a one-dimensional chain along the c-axis via intermolecular N2—H1N2···O1 hydrogen bonds (Table 1) and further connected into a two dimensional layer parallel to the bc-plane by intermolecular C9—H9A···F1 hydrogen bonds (Table 1). In addition, a C7—H7A···Cg1 (Table 1) interaction is also observed in the crystal structure (Cg1 is the centroid of C1–C6).

Related literature top

For the biological activity of thiourea derivatives, see: Vankatachalam et al. (2001). For related structures, see: Yusof, Arshad et al. (2012); Yusof, Embong et al. (2012); Yusof, Mutalib et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

An acetone (30 ml) solution of 2-triflouroaniline (1.25 g, 8.4 mmol) was added to a round-bottom flask containing 2,2-diphenylacetyl chloride (1.93 g, 8.4 mmol) and ammonium thiocyanate (0.64 g, 8.4 mmol). The mixture was put at reflux for 1.5 H then filtered off and left to evaporate at room temperature. The colourless precipitate obtained was washed with water and cold ethanol. Colourless crystals suitable for X-ray analysis were obtained by recrystallization of the precipitate in acetone.

Refinement top

N-bound H atoms were located in a difference Fourier map. Atom H1N1 was refined freely [N—H = 0.96 (3) Å], while atom H1N2 was refined with a bond restraint N—H = 0.85 (2) Å [refined distance: N1—H1N1 = 0.807 (15) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 or 1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final refinement, one outlier was omitted (10 0 -7).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. The dashed line represents the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2,2-Diphenyl-N-{[2-(trifluoromethyl)phenyl]carbamothioyl}acetamide top
Crystal data top
C22H17F3N2OSF(000) = 856
Mr = 414.44Dx = 1.401 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 5325 reflections
a = 20.0318 (4) Åθ = 2.2–27.2°
b = 10.2866 (2) ŵ = 0.21 mm1
c = 9.5351 (2) ÅT = 100 K
V = 1964.79 (7) Å3Plate, colourless
Z = 40.56 × 0.18 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5618 independent reflections
Radiation source: fine-focus sealed tube4608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2728
Tmin = 0.892, Tmax = 0.987k = 1414
21265 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.2655P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5618 reflectionsΔρmax = 0.24 e Å3
270 parametersΔρmin = 0.25 e Å3
2 restraintsAbsolute structure: Flack (1983), 2568 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C22H17F3N2OSV = 1964.79 (7) Å3
Mr = 414.44Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 20.0318 (4) ŵ = 0.21 mm1
b = 10.2866 (2) ÅT = 100 K
c = 9.5351 (2) Å0.56 × 0.18 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5618 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4608 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.987Rint = 0.047
21265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.24 e Å3
S = 1.02Δρmin = 0.25 e Å3
5618 reflectionsAbsolute structure: Flack (1983), 2568 Freidel pairs
270 parametersAbsolute structure parameter: 0.01 (6)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.34230 (6)0.45765 (11)0.02227 (17)0.0418 (4)
F20.32081 (5)0.66244 (10)0.02775 (14)0.0327 (3)
F30.29424 (5)0.54911 (10)0.15416 (15)0.0328 (3)
S10.35402 (2)0.73635 (4)0.50740 (6)0.02441 (11)
N10.36053 (7)0.78665 (14)0.2330 (2)0.0187 (3)
N20.28048 (8)0.90001 (14)0.3579 (2)0.0174 (3)
O10.27383 (6)0.95082 (11)0.12731 (15)0.0193 (3)
C10.14450 (8)1.10138 (16)0.0592 (2)0.0181 (4)
H1A0.12991.01440.07310.022*
C20.12280 (9)1.16913 (18)0.0574 (2)0.0224 (4)
H2A0.09441.12820.12380.027*
C30.14277 (9)1.29838 (18)0.0774 (2)0.0257 (5)
H3A0.12761.34580.15680.031*
C40.18467 (8)1.35616 (16)0.0193 (2)0.0243 (5)
H4A0.19821.44390.00650.029*
C50.20734 (8)1.28682 (16)0.1358 (2)0.0222 (4)
H5A0.23651.32720.20120.027*
C60.18726 (8)1.15807 (15)0.1565 (2)0.0168 (4)
C70.20977 (8)1.08378 (15)0.2869 (2)0.0152 (4)
H7A0.23681.14580.34440.018*
C80.14922 (8)1.04613 (16)0.3756 (2)0.0161 (4)
C90.12615 (9)1.13343 (17)0.4758 (2)0.0217 (4)
H9A0.14981.21210.49170.026*
C100.06891 (9)1.10700 (18)0.5532 (2)0.0253 (4)
H10A0.05331.16780.62060.030*
C110.03473 (9)0.99143 (19)0.5314 (2)0.0273 (5)
H11A0.00430.97270.58430.033*
C120.05759 (9)0.90365 (18)0.4329 (2)0.0240 (5)
H12A0.03410.82460.41830.029*
C130.11465 (9)0.92994 (16)0.3548 (2)0.0201 (4)
H13A0.13010.86890.28740.024*
C140.25639 (8)0.97102 (14)0.2475 (2)0.0148 (3)
C150.33231 (8)0.80792 (16)0.3580 (2)0.0176 (4)
C160.41583 (8)0.70043 (16)0.2104 (2)0.0185 (4)
C170.47773 (9)0.72797 (17)0.2680 (2)0.0216 (4)
H17A0.48300.80100.32800.026*
C180.53209 (9)0.64879 (18)0.2380 (2)0.0260 (5)
H18A0.57450.66810.27740.031*
C190.52477 (9)0.54208 (18)0.1511 (3)0.0295 (5)
H19A0.56190.48740.13200.035*
C200.46349 (9)0.51515 (18)0.0922 (3)0.0269 (5)
H20A0.45860.44240.03170.032*
C210.40852 (9)0.59409 (16)0.1208 (2)0.0213 (4)
C220.34224 (9)0.56611 (17)0.0566 (3)0.0261 (5)
H1N20.2679 (10)0.9143 (17)0.4368 (17)0.015 (6)*
H1N10.3439 (11)0.823 (2)0.147 (3)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0392 (7)0.0294 (6)0.0567 (11)0.0032 (5)0.0016 (8)0.0226 (7)
F20.0323 (6)0.0328 (6)0.0330 (8)0.0032 (5)0.0084 (6)0.0004 (6)
F30.0265 (5)0.0316 (6)0.0403 (9)0.0078 (4)0.0048 (6)0.0017 (6)
S10.0327 (2)0.02260 (19)0.0179 (2)0.00898 (17)0.0012 (3)0.0045 (2)
N10.0213 (7)0.0191 (7)0.0156 (9)0.0036 (6)0.0009 (8)0.0003 (7)
N20.0215 (7)0.0200 (7)0.0107 (9)0.0040 (6)0.0024 (8)0.0003 (7)
O10.0197 (6)0.0248 (6)0.0135 (8)0.0022 (5)0.0008 (6)0.0012 (6)
C10.0161 (7)0.0196 (8)0.0187 (10)0.0002 (6)0.0020 (8)0.0020 (8)
C20.0202 (8)0.0273 (9)0.0196 (11)0.0014 (7)0.0015 (9)0.0023 (9)
C30.0211 (9)0.0286 (9)0.0274 (13)0.0056 (7)0.0021 (9)0.0119 (9)
C40.0224 (8)0.0200 (7)0.0306 (13)0.0011 (6)0.0028 (10)0.0105 (9)
C50.0185 (8)0.0188 (7)0.0293 (13)0.0021 (6)0.0018 (10)0.0033 (9)
C60.0150 (7)0.0169 (7)0.0186 (11)0.0018 (6)0.0020 (8)0.0023 (8)
C70.0163 (7)0.0154 (7)0.0138 (10)0.0015 (6)0.0004 (8)0.0005 (7)
C80.0165 (7)0.0195 (8)0.0124 (10)0.0018 (6)0.0008 (8)0.0021 (7)
C90.0228 (8)0.0226 (7)0.0196 (12)0.0038 (6)0.0019 (9)0.0013 (8)
C100.0252 (9)0.0319 (9)0.0188 (11)0.0098 (7)0.0021 (9)0.0015 (9)
C110.0180 (8)0.0378 (10)0.0260 (14)0.0047 (7)0.0044 (10)0.0123 (10)
C120.0190 (8)0.0265 (9)0.0266 (13)0.0021 (7)0.0007 (9)0.0081 (9)
C130.0188 (8)0.0209 (8)0.0205 (11)0.0003 (6)0.0009 (9)0.0038 (9)
C140.0132 (7)0.0164 (7)0.0147 (10)0.0030 (6)0.0007 (8)0.0026 (8)
C150.0199 (8)0.0142 (7)0.0187 (10)0.0012 (6)0.0015 (9)0.0011 (8)
C160.0195 (8)0.0176 (7)0.0184 (11)0.0030 (6)0.0024 (9)0.0021 (8)
C170.0239 (9)0.0209 (8)0.0199 (11)0.0006 (7)0.0005 (9)0.0008 (8)
C180.0201 (8)0.0277 (9)0.0303 (13)0.0017 (7)0.0004 (10)0.0047 (10)
C190.0255 (9)0.0252 (9)0.0378 (15)0.0072 (7)0.0066 (11)0.0030 (10)
C200.0301 (9)0.0196 (8)0.0309 (14)0.0026 (7)0.0053 (10)0.0042 (9)
C210.0231 (8)0.0162 (7)0.0247 (12)0.0007 (6)0.0029 (9)0.0006 (8)
C220.0275 (9)0.0197 (8)0.0313 (13)0.0021 (7)0.0027 (10)0.0066 (9)
Geometric parameters (Å, º) top
F1—C221.345 (2)C7—C141.536 (2)
F2—C221.346 (2)C7—H7A1.0000
F3—C221.349 (2)C8—C91.391 (3)
S1—C151.661 (2)C8—C131.395 (2)
N1—C151.337 (3)C9—C101.390 (3)
N1—C161.435 (2)C9—H9A0.9500
N1—H1N10.96 (3)C10—C111.388 (3)
N2—C141.369 (3)C10—H10A0.9500
N2—C151.405 (2)C11—C121.382 (3)
N2—H1N20.807 (15)C11—H11A0.9500
O1—C141.216 (2)C12—C131.391 (3)
C1—C21.382 (3)C12—H12A0.9500
C1—C61.391 (3)C13—H13A0.9500
C1—H1A0.9500C16—C171.386 (2)
C2—C31.402 (3)C16—C211.395 (3)
C2—H2A0.9500C17—C181.390 (2)
C3—C41.382 (3)C17—H17A0.9500
C3—H3A0.9500C18—C191.383 (3)
C4—C51.396 (3)C18—H18A0.9500
C4—H4A0.9500C19—C201.378 (3)
C5—C61.398 (2)C19—H19A0.9500
C5—H5A0.9500C20—C211.395 (2)
C6—C71.527 (3)C20—H20A0.9500
C7—C81.529 (2)C21—C221.490 (3)
C15—N1—C16124.13 (18)C12—C11—C10119.86 (18)
C15—N1—H1N1123.6 (14)C12—C11—H11A120.1
C16—N1—H1N1112.2 (15)C10—C11—H11A120.1
C14—N2—C15128.37 (19)C11—C12—C13120.64 (18)
C14—N2—H1N2120.6 (14)C11—C12—H12A119.7
C15—N2—H1N2110.6 (14)C13—C12—H12A119.7
C2—C1—C6121.25 (16)C12—C13—C8119.89 (19)
C2—C1—H1A119.4C12—C13—H13A120.1
C6—C1—H1A119.4C8—C13—H13A120.1
C1—C2—C3119.90 (18)O1—C14—N2122.15 (15)
C1—C2—H2A120.1O1—C14—C7122.26 (17)
C3—C2—H2A120.1N2—C14—C7115.46 (18)
C4—C3—C2119.35 (19)N1—C15—N2114.95 (19)
C4—C3—H3A120.3N1—C15—S1125.53 (14)
C2—C3—H3A120.3N2—C15—S1119.53 (16)
C3—C4—C5120.61 (16)C17—C16—C21119.80 (16)
C3—C4—H4A119.7C17—C16—N1120.32 (16)
C5—C4—H4A119.7C21—C16—N1119.68 (16)
C4—C5—C6120.18 (18)C16—C17—C18119.99 (18)
C4—C5—H5A119.9C16—C17—H17A120.0
C6—C5—H5A119.9C18—C17—H17A120.0
C1—C6—C5118.69 (17)C19—C18—C17120.36 (18)
C1—C6—C7120.99 (14)C19—C18—H18A119.8
C5—C6—C7120.27 (17)C17—C18—H18A119.8
C6—C7—C8110.06 (13)C20—C19—C18119.87 (17)
C6—C7—C14111.04 (16)C20—C19—H19A120.1
C8—C7—C14115.23 (13)C18—C19—H19A120.1
C6—C7—H7A106.7C19—C20—C21120.42 (18)
C8—C7—H7A106.7C19—C20—H20A119.8
C14—C7—H7A106.7C21—C20—H20A119.8
C9—C8—C13119.07 (17)C20—C21—C16119.55 (17)
C9—C8—C7118.72 (15)C20—C21—C22120.68 (17)
C13—C8—C7122.14 (17)C16—C21—C22119.77 (16)
C10—C9—C8120.82 (17)F1—C22—F2106.09 (19)
C10—C9—H9A119.6F1—C22—F3106.16 (14)
C8—C9—H9A119.6F2—C22—F3106.26 (15)
C11—C10—C9119.71 (18)F1—C22—C21112.90 (15)
C11—C10—H10A120.1F2—C22—C21112.79 (15)
C9—C10—H10A120.1F3—C22—C21112.10 (19)
C6—C1—C2—C31.4 (3)C8—C7—C14—O1128.74 (18)
C1—C2—C3—C40.7 (3)C6—C7—C14—N2178.66 (14)
C2—C3—C4—C50.3 (3)C8—C7—C14—N255.4 (2)
C3—C4—C5—C60.6 (3)C16—N1—C15—N2177.55 (15)
C2—C1—C6—C51.1 (3)C16—N1—C15—S12.0 (3)
C2—C1—C6—C7178.57 (16)C14—N2—C15—N11.1 (3)
C4—C5—C6—C10.1 (3)C14—N2—C15—S1178.46 (14)
C4—C5—C6—C7177.58 (16)C15—N1—C16—C1765.9 (2)
C1—C6—C7—C860.0 (2)C15—N1—C16—C21119.3 (2)
C5—C6—C7—C8117.41 (17)C21—C16—C17—C180.8 (3)
C1—C6—C7—C1468.76 (19)N1—C16—C17—C18175.70 (19)
C5—C6—C7—C14113.78 (17)C16—C17—C18—C190.2 (3)
C6—C7—C8—C988.1 (2)C17—C18—C19—C201.0 (3)
C14—C7—C8—C9145.37 (17)C18—C19—C20—C210.7 (3)
C6—C7—C8—C1388.9 (2)C19—C20—C21—C160.4 (3)
C14—C7—C8—C1337.6 (3)C19—C20—C21—C22179.5 (2)
C13—C8—C9—C101.0 (3)C17—C16—C21—C201.1 (3)
C7—C8—C9—C10176.08 (17)N1—C16—C21—C20176.01 (19)
C8—C9—C10—C110.8 (3)C17—C16—C21—C22178.75 (18)
C9—C10—C11—C120.3 (3)N1—C16—C21—C223.9 (3)
C10—C11—C12—C130.0 (3)C20—C21—C22—F12.8 (3)
C11—C12—C13—C80.2 (3)C16—C21—C22—F1177.32 (18)
C9—C8—C13—C120.7 (3)C20—C21—C22—F2117.5 (2)
C7—C8—C13—C12176.30 (18)C16—C21—C22—F262.4 (3)
C15—N2—C14—O18.3 (3)C20—C21—C22—F3122.6 (2)
C15—N2—C14—C7167.60 (16)C16—C21—C22—F357.5 (2)
C6—C7—C14—O12.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.96 (3)1.93 (2)2.6237 (19)127 (2)
N2—H1N2···O1i0.81 (2)2.04 (2)2.838 (2)174 (2)
C9—H9A···F1ii0.952.533.395 (2)151
C7—H7A···Cg1iii1.002.843.7826 (19)158
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC22H17F3N2OS
Mr414.44
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)20.0318 (4), 10.2866 (2), 9.5351 (2)
V3)1964.79 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.56 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.892, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
21265, 5618, 4608
Rint0.047
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.081, 1.02
No. of reflections5618
No. of parameters270
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25
Absolute structureFlack (1983), 2568 Freidel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.96 (3)1.93 (2)2.6237 (19)127 (2)
N2—H1N2···O1i0.807 (15)2.035 (15)2.838 (2)174 (2)
C9—H9A···F1ii0.952.533.395 (2)151
C7—H7A···Cg1iii1.002.843.7826 (19)158
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y, z.
 

Footnotes

Thomson Reuters ResearcherID: F-9119-2012.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the USM Short Term Grant, No. 304/PFIZIK/6312078, to conduct this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship (ASTS).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVankatachalam, T. K., Sudbeck, E. A., Mao, C. & Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523–528.  Web of Science CSD CrossRef PubMed Google Scholar
First citationYusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012). Acta Cryst. E68, o2670.  CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1029.  CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o982.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1255-o1256
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds