supplementary materials


is5287 scheme

Acta Cryst. (2013). E69, m443    [ doi:10.1107/S1600536813018394 ]

Bis[2-(1,3-benzothiazol-2-yl)phenyl-[kappa]2C1,N][1,3-bis(4-bromophenyl)propane-1,3-dionato-[kappa]2O,O']iridium(III)

Y.-I. Kim, S.-J. Yun and S. K. Kang

Abstract top

The title complex, [Ir(C15H9Br2O2)(C13H8NS)2], lies about a crystallographic twofold rotation axis passing through the IrIII atom and the central C atom of the bis(bromophenyl)propane-1,3-dionate ligand. The IrIII atom adopts a distorted octahedral geometry coordinated by two N atoms in the axial positions, and two C and two O atoms in the equatorial plane. The dihedral angle between the two thiazole ring systems in the complex is 77.45 (10)°.

Comment top

Electrophosphorescent materials based on iridium(III) have been developed in order to apply for organic light-emitting diodes (OLEDs) (Ulbricht et al., 2009) because iridium(III) complexes possess relatively short excited state lifetimes, high quantum efficiencies (Liu et al., 2008; Hwang et al., 2005; Tsuboyama et al., 2003) and remarkable color tuning from red to blue by a modification of the ligand structures (Bera et al., 2007). Recently, we reported red phosphorescent iridium complexes (Sengottuvelan, Yun, Kim et al., 2013; Sengottuvelan et al., 2011) for an application for OLEDs. Herein, an orange-red emissive complex, a new heteroleptic cyclometalated iridium(III) complex containing two 2-phenylbenzothiazole as main ligands and 1,3-bis(p-bromophenyl)-1,3-propanedione as an ancillary ligand, is prepared and its crystal structure is reported. The title complex emitted at 617 (595 s h.) nm in dichloromethane at room temperature.

In the title compound (Fig. 1), the IrIII atom lies on a twofold axis and is coordinated by two C atoms, two N atoms, and two O atoms of three bidentate ligands in a distorted octahedral geometry. The angles around Ir atoms are in the range of 79.67 (14)–97.27 (14)°. The Ir—C bond distances of 1.996 (4) Å are shorter than the Ir—N distances of 2.060 (3) Å due to the stronger trans influence of the phenyl ring compared to the 5-membered thiazole ring (Table 1). The bidentate 1,3-benzothiazol-2-ylphenyl ligand (N12–C26) is almost planar, with an r.m.s. deviation of 0.051 Å from the corresponding least-squares plane defined by the fifteen constituent atoms.

Related literature top

For luminescent Ir complexes, see: Ulbricht et al. (2009); Liu et al. (2008); Hwang et al. (2005); Tsuboyama et al. (2003); Bera et al. (2007). For phosphorescent Ir complexes, see: Xu et al. (2009); Sengottuvelan, Yun, Kim et al. (2013); Sengottuvelan et al. (2011).

Experimental top

2-Phenylbenzothiazole (pbt) was purchased from Sigma-Aldrich Chemicals.

Synthesis of 1,3-bis(p-bromophenyl)-1,3-propanedione (dbacac): A mixture of a sodium hydride in oil dispersion (60%) and ethyl 4-bromobenzoate in 20 ml of dry THF was heated to 60 °C. 4-Bromoacetophenone in 8 ml in dry THF was added dropwise to the mixture. After the reaction temperature was held at 60 °C for 1 day, the mixture was poured into water and then neutralized with hydrochloric acid. The resulting precipitate was recrystallized from dichloromethane and hexane to give pale ivory powders.

Synthesis of title complex: The reaction of IrCl3 3H2O with pbt in a 3:1 mixture of 2-ethoxyethanol and water at 135 °C gave cyclometallated iridium(III) µ-chloro-bridged dimer, [(pbt)2Ir(µ-Cl)]2. The prepared iridium(III) dimer complex, sodium carbonate and dbacac were dissolved in 2-ethoxyethanol. The mixture was heated at 125 °C for 8 h. The mixture was extracted with dichloromethane and dried over anhydrous magnesium sulfate. The crude product was flash chromatographed on silica gel using dichloromethane/methanol as an eluent. The red crystals were obtained from hexane/chloroform solution by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks were located at 0.84 and 0.81 Å, respectively, from atom Ir1.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. [Symmetry code: (i) -x, y, -z + 1/2.]
Bis[2-(1,3-benzothiazol-2-yl)phenyl-κ2C1,N][1,3-bis(4-bromophenyl)propane-1,3-dionato-κ2O,O']iridium(III) top
Crystal data top
[Ir(C15H9Br2O2)(C13H8NS)2]F(000) = 1920
Mr = 993.77Dx = 1.941 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6529 reflections
a = 15.888 (4) Åθ = 2.3–28.2°
b = 12.689 (3) ŵ = 6.44 mm1
c = 17.143 (5) ÅT = 203 K
β = 100.28 (5)°Block, red
V = 3400.8 (16) Å30.35 × 0.29 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3623 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 921
Tmin = 0.132, Tmax = 0.365k = 168
15842 measured reflectionsl = 2121
4079 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0363P)2 + 6.8133P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4079 reflectionsΔρmax = 1.55 e Å3
227 parametersΔρmin = 1.26 e Å3
Crystal data top
[Ir(C15H9Br2O2)(C13H8NS)2]V = 3400.8 (16) Å3
Mr = 993.77Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.888 (4) ŵ = 6.44 mm1
b = 12.689 (3) ÅT = 203 K
c = 17.143 (5) Å0.35 × 0.29 × 0.16 mm
β = 100.28 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4079 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3623 reflections with I > 2σ(I)
Tmin = 0.132, Tmax = 0.365Rint = 0.059
15842 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076Δρmax = 1.55 e Å3
S = 1.06Δρmin = 1.26 e Å3
4079 reflectionsAbsolute structure: ?
227 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir100.38790 (2)0.250.01610 (7)
O20.02867 (16)0.2664 (2)0.33857 (15)0.0201 (5)
C30.0262 (2)0.1685 (3)0.3239 (2)0.0198 (7)
C400.1208 (4)0.250.0307 (13)
H400.04750.250.037*
C50.0587 (2)0.0971 (3)0.3927 (2)0.0206 (7)
C60.1155 (3)0.1359 (3)0.4576 (2)0.0270 (8)
H60.12980.2070.45950.032*
C70.1512 (3)0.0701 (4)0.5198 (3)0.0311 (9)
H70.19090.09610.5620.037*
C80.1264 (3)0.0348 (3)0.5177 (3)0.0290 (9)
C90.0688 (3)0.0745 (3)0.4554 (2)0.0265 (8)
H90.05280.1450.45470.032*
C100.0349 (3)0.0081 (3)0.3935 (2)0.0244 (8)
H100.00470.03460.35160.029*
Br110.17062 (3)0.12509 (4)0.60339 (3)0.04469 (14)
N120.11887 (19)0.3940 (2)0.21803 (19)0.0202 (6)
C130.1968 (2)0.3442 (3)0.2459 (2)0.0207 (7)
C140.2596 (2)0.3667 (3)0.1998 (2)0.0244 (8)
S150.21858 (6)0.45204 (9)0.12315 (6)0.0295 (2)
C160.1222 (2)0.4541 (3)0.1558 (2)0.0199 (7)
C170.0476 (2)0.5149 (3)0.1241 (2)0.0196 (7)
C180.0208 (2)0.4977 (3)0.1654 (2)0.0184 (7)
C190.0952 (2)0.5581 (3)0.1394 (2)0.0261 (8)
H190.14180.55130.1650.031*
C200.0997 (3)0.6271 (3)0.0762 (3)0.0303 (9)
H200.14960.66550.06030.036*
C210.0318 (3)0.6408 (3)0.0359 (2)0.0268 (9)
H210.03620.68750.00640.032*
C220.0422 (2)0.5837 (3)0.0601 (2)0.0228 (8)
H220.08830.59110.03370.027*
C230.2167 (2)0.2787 (3)0.3110 (2)0.0268 (8)
H230.17630.26380.34250.032*
C240.2977 (3)0.2359 (4)0.3284 (3)0.0333 (10)
H240.31150.19150.3720.04*
C250.3590 (3)0.2575 (4)0.2825 (3)0.0329 (10)
H250.4130.22720.29540.039*
C260.3408 (3)0.3236 (4)0.2180 (3)0.0327 (9)
H260.3820.33880.18730.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01424 (10)0.01535 (10)0.01891 (12)00.00346 (7)0
O20.0234 (13)0.0187 (13)0.0190 (13)0.0013 (10)0.0061 (10)0.0028 (9)
C30.0209 (16)0.0198 (18)0.0201 (19)0.0006 (14)0.0074 (14)0.0040 (13)
C40.051 (4)0.017 (3)0.025 (3)00.011 (3)0
C50.0246 (18)0.0197 (18)0.0198 (19)0.0025 (14)0.0105 (14)0.0005 (13)
C60.0275 (19)0.026 (2)0.028 (2)0.0048 (16)0.0062 (16)0.0025 (15)
C70.0256 (19)0.038 (2)0.029 (2)0.0043 (18)0.0026 (17)0.0056 (17)
C80.0233 (18)0.032 (2)0.034 (2)0.0048 (17)0.0113 (17)0.0138 (17)
C90.035 (2)0.0183 (17)0.029 (2)0.0041 (16)0.0139 (17)0.0062 (15)
C100.0297 (19)0.0208 (18)0.024 (2)0.0005 (15)0.0071 (16)0.0023 (14)
Br110.0279 (2)0.0540 (3)0.0503 (3)0.0050 (2)0.0020 (2)0.0296 (2)
N120.0169 (14)0.0209 (15)0.0228 (16)0.0005 (12)0.0034 (12)0.0015 (12)
C130.0143 (15)0.0221 (18)0.025 (2)0.0021 (14)0.0016 (14)0.0042 (14)
C140.0207 (18)0.025 (2)0.028 (2)0.0032 (15)0.0063 (15)0.0046 (14)
S150.0228 (5)0.0371 (6)0.0312 (6)0.0040 (4)0.0114 (4)0.0114 (4)
C160.0198 (17)0.0213 (17)0.0185 (18)0.0025 (14)0.0035 (14)0.0005 (13)
C170.0200 (17)0.0193 (17)0.0182 (18)0.0002 (14)0.0001 (14)0.0018 (13)
C180.0192 (16)0.0154 (16)0.0195 (19)0.0010 (13)0.0008 (14)0.0028 (12)
C190.0221 (18)0.025 (2)0.030 (2)0.0033 (15)0.0022 (16)0.0000 (15)
C200.030 (2)0.027 (2)0.032 (2)0.0094 (17)0.0010 (17)0.0011 (16)
C210.038 (2)0.0191 (18)0.022 (2)0.0004 (16)0.0017 (17)0.0013 (14)
C220.0251 (18)0.0228 (18)0.0200 (19)0.0028 (15)0.0026 (15)0.0013 (14)
C230.0187 (17)0.029 (2)0.033 (2)0.0008 (15)0.0062 (16)0.0096 (16)
C240.028 (2)0.036 (2)0.035 (2)0.0082 (18)0.0020 (18)0.0116 (18)
C250.0216 (19)0.035 (2)0.041 (3)0.0119 (17)0.0036 (18)0.0038 (18)
C260.0225 (19)0.038 (2)0.041 (3)0.0040 (18)0.0143 (17)0.0054 (19)
Geometric parameters (Å, º) top
Ir1—C18i1.996 (4)C13—C231.382 (5)
Ir1—C181.996 (4)C13—C141.407 (5)
Ir1—N12i2.060 (3)C14—C261.385 (5)
Ir1—N122.060 (3)C14—S151.738 (4)
Ir1—O2i2.155 (3)S15—C161.722 (4)
Ir1—O22.155 (3)C16—C171.436 (5)
O2—C31.266 (4)C17—C221.394 (5)
C3—C41.399 (4)C17—C181.415 (5)
C3—C51.505 (5)C18—C191.413 (5)
C4—C3i1.399 (4)C19—C201.384 (6)
C4—H40.93C19—H190.93
C5—C101.388 (5)C20—C211.392 (6)
C5—C61.391 (6)C20—H200.93
C6—C71.392 (6)C21—C221.381 (6)
C6—H60.93C21—H210.93
C7—C81.387 (6)C22—H220.93
C7—H70.93C23—C241.380 (5)
C8—C91.372 (6)C23—H230.93
C8—Br111.896 (4)C24—C251.384 (6)
C9—C101.386 (5)C24—H240.93
C9—H90.93C25—C261.377 (6)
C10—H100.93C25—H250.93
N12—C161.320 (5)C26—H260.93
N12—C131.396 (5)
C18i—Ir1—C1891.4 (2)C13—N12—Ir1133.7 (3)
C18i—Ir1—N12i79.67 (14)C23—C13—N12127.6 (3)
C18—Ir1—N12i97.27 (14)C23—C13—C14119.5 (3)
C18i—Ir1—N1297.27 (14)N12—C13—C14113.0 (3)
C18—Ir1—N1279.67 (14)C26—C14—C13121.3 (4)
N12i—Ir1—N12175.67 (17)C26—C14—S15128.7 (3)
C18i—Ir1—O2i176.72 (12)C13—C14—S15110.1 (3)
C18—Ir1—O2i90.04 (12)C16—S15—C1489.93 (18)
N12i—Ir1—O2i97.24 (11)N12—C16—C17117.8 (3)
N12—Ir1—O2i85.88 (11)N12—C16—S15114.8 (3)
C18i—Ir1—O290.04 (12)C17—C16—S15127.3 (3)
C18—Ir1—O2176.72 (12)C22—C17—C18123.1 (3)
N12i—Ir1—O285.88 (11)C22—C17—C16124.4 (4)
N12—Ir1—O297.24 (11)C18—C17—C16112.5 (3)
O2i—Ir1—O288.63 (14)C19—C18—C17115.6 (3)
C3—O2—Ir1124.5 (2)C19—C18—Ir1129.0 (3)
O2—C3—C4126.8 (4)C17—C18—Ir1115.4 (3)
O2—C3—C5116.2 (3)C20—C19—C18120.9 (4)
C4—C3—C5117.0 (4)C20—C19—H19119.5
C3i—C4—C3128.7 (5)C18—C19—H19119.5
C3i—C4—H4115.7C19—C20—C21122.1 (4)
C3—C4—H4115.7C19—C20—H20119
C10—C5—C6118.1 (4)C21—C20—H20119
C10—C5—C3122.1 (3)C22—C21—C20118.6 (4)
C6—C5—C3119.8 (3)C22—C21—H21120.7
C5—C6—C7121.2 (4)C20—C21—H21120.7
C5—C6—H6119.4C21—C22—C17119.6 (4)
C7—C6—H6119.4C21—C22—H22120.2
C8—C7—C6118.7 (4)C17—C22—H22120.2
C8—C7—H7120.7C24—C23—C13118.8 (4)
C6—C7—H7120.7C24—C23—H23120.6
C9—C8—C7121.3 (4)C13—C23—H23120.6
C9—C8—Br11119.0 (3)C23—C24—C25121.5 (4)
C7—C8—Br11119.7 (3)C23—C24—H24119.3
C8—C9—C10119.1 (4)C25—C24—H24119.3
C8—C9—H9120.4C26—C25—C24120.6 (4)
C10—C9—H9120.4C26—C25—H25119.7
C9—C10—C5121.5 (4)C24—C25—H25119.7
C9—C10—H10119.2C25—C26—C14118.3 (4)
C5—C10—H10119.2C25—C26—H26120.8
C16—N12—C13112.2 (3)C14—C26—H26120.8
C16—N12—Ir1114.0 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ir(C15H9Br2O2)(C13H8NS)2]
Mr993.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)203
a, b, c (Å)15.888 (4), 12.689 (3), 17.143 (5)
β (°) 100.28 (5)
V3)3400.8 (16)
Z4
Radiation typeMo Kα
µ (mm1)6.44
Crystal size (mm)0.35 × 0.29 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.132, 0.365
No. of measured, independent and
observed [I > 2σ(I)] reflections
15842, 4079, 3623
Rint0.059
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.06
No. of reflections4079
No. of parameters227
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.55, 1.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS2013 (Sheldrick, 2013), SHELXL2013 (Sheldrick, 2013), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Ir1—C181.996 (4)Ir1—O22.155 (3)
Ir1—N122.060 (3)
references
References top

Bera, N., Cumpustey, N., Burn, P. L. & Samuel, I. D. W. (2007). Adv. Funct. Mater. 17, 1149–1152.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hwang, F. M., Chen, H. Y., Chen, P. S., Liu, C. S., Chi, Y. C., Shu, C. F., Wu, F. L., Chou, P. T., Peng, S. M. & Lee, G. H. (2005). Inorg. Chem. 44, 1344–1353.

Liu, Z.-W., Nie, D.-B., Bian, Z.-Q., Chen, F.-F., Lou, B., Bian, J. & Huang, C.-H. (2008). ChemPhysChem, 9, 634–640.

Sengottuvelan, N., Yun, S.-J., Kang, S. K. & Kim, Y.-I. (2011). Bull. Korean Chem. Soc. 32, 4321–4326.

Sengottuvelan, N., Yun, S.-J., Kim, D.-Y., Hwang, I.-H., Kang, S. K. & Kim, Y.-I. (2013). Bull. Korean Chem. Soc. 34, 167–173.

Sheldrick, G. M. (2013). University of Göttingen, Germany.

Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.

Ulbricht, C., Beyer, B., Friebe, C., Winter, A. & Schubert, U. S. (2009). Adv. Mater. 21, 4418–4441.

Xu, M., Zhou, R., Wang, G. & Yu, J. (2009). Inorg. Chim. Acta, 362, 2183–2188.