organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1355-o1356

4-[4-(Hept­yl­oxy)benzo­yl­oxy]phenyl 2-oxo-7-tri­fluoro­methyl-2H-chromene-3-carboxyl­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore Mysore, Karnataka 570 005, India, bDepartment of Chemistry Kuvempu University, Shankaraghatta Shimoga, Karnataka, India, cDepartment of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

(Received 8 June 2013; accepted 25 July 2013; online 31 July 2013)

The title compound, C31H27F3O7, is a liquid crystal and exhibits enanti­otropic SmA and nematic phase transitions. In the crystal, the the 2H-chromene ring system makes dihedral angles of 54.46 (17) and 7.79 (16)°, respectively, with the central benzene ring and 4-(hept­yloxy)benzene ring. The three F atoms of the –CF3 group are disordered over two sets of sites, with an occupancy ratio of 0.62 (3):0.38 (3). The crystal structre features two pairs of C—H⋯O hydrogen bonds, which form inversion dimers and generate R22(10) and R22(30) ring patterns. C—H⋯O inter­actions along [100] and C—H⋯π inter­actions futher consolidate the packing, leading to a three-dimensional network.

Related literature

For similar structures, see: Palakshamurthy, Sreenivasa et al. (2013[Palakshamurthy, B. S., Sreenivasa, S., Srinivasa, H. T., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o212.]), Palakshamurthy, Devarajegowda et al. (2013[Palakshamurthy, B. S., Devarajegowda, H. C., Srinivasa, H. T., Sreenivasa, S. & Vijithkumar, (2013). Acta Cryst. E69, o621-o622.]). For graph-set notation for hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C31H27F3O7

  • Mr = 568.53

  • Triclinic, [P \overline 1]

  • a = 5.6810 (3) Å

  • b = 16.036 (2) Å

  • c = 16.2954 (18) Å

  • α = 68.940 (12)°

  • β = 88.914 (6)°

  • γ = 88.486 (7)°

  • V = 1384.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.981

  • 8822 measured reflections

  • 4876 independent reflections

  • 2837 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.104

  • wR(F2) = 0.316

  • S = 0.99

  • 4876 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C12–C17 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O6i 0.93 2.53 3.313 (5) 142
C8—H8⋯O3i 0.93 2.44 3.277 (4) 150
C16—H16⋯O6ii 0.93 2.45 3.350 (5) 163
C14—H14⋯Cg2iii 0.93 2.81 3.517 (5) 133
C23—H23⋯Cg1iv 0.93 2.94 3.650 (5) 134
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the structure of coumarin based liquid crystals (LC), we report herein the crystal structure of 4-(4-(heptyloxy)benzoyloxy)phenyl 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylate (I), and its comparision with 4-(decyloxy)phenyl 7-(trifluoromethyl)- 2-oxo-2H-chromene-3-carboxylate (II), 4-(octyloxy)phenyl 2-oxo-2H-chromene-3 –carboxylate (III) (Palakshamurthy, Sreenivasa et al., 2013; Palakshamurthy, Devarajegowda et al., 2013). The title compound, C31H27F3O7, is a liquid crystal (LC) exhibiting enantiotropic SmA, nematic phase transitions at 520.2(2.0), 522.7(2.7) on heating and at 519.6(2.0), 522.1(2.9) on cooling [The transition temperature in K and the associated enthalpy values in kJ mol-1 (in italics)] The asymmetric unit of 4-(4-(heptyloxy)benzoyloxy)phenyl 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylate is shown in Fig.1.The three F atoms of the –CF3 group are disordered over two sets of sites with occupancy factors 0.62 (3):0.38 (3).The dihedral angle between the 2H-chromene ring and the benzene ring A in the compound I is 54.46 (17)°, compared to the observed values of 62.97 (2)°, 21.11 (1)° in compounds II and III respectively. The crystal structre is stabilized by two pairs of C8—H8···O3 and C3—H3···O6 hydrogen bonds form inversion dimers and generate R22(10) and R22(30) ring patterns respectivly (Bernstein et al., 1995). The C16—H16···O6 contact and C—H···Cg1 (centroid of C12—C17) and C—H···Cg2 (centroid of C19—C24) interactions further strengthen the packing (Fig. 2, Fig.3).

Related literature top

For similar structures, see: Palakshamurthy, Sreenivasa et al. (2013), Palakshamurthy, Devarajegowda et al. (2013). For graph-set notation for hydrogen bonds, see: Bernstein et al. (1995)

Experimental top

A mixture of 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylic acid (258 mg, 0.01 mmol), 4-hydroxyphenyl 4-(heptyloxy)benzoate (358 mg, 0.01 mmol), N,N-dicyclohexylcarbodiimide (DCC) (210 mg, 0.012 mmol) and catalytic quantity of dimethylaminopyridimidine with anhydrous tetrahydrofuran (5 ml) was stirred for 24hrs at room temperature. The N,N-dicyclohexylurea formed was filtered off and the filtrate was diluted with dichloromethane (25 ml). This solution was washed successively with water (2 x 30 ml), 5% aqueous acetic acid (3 x 50 ml), water (3 x 50ml) and was then dried (Na2SO4). The residue obtained on removal of solvent was chromatographed on silica gel and eluted with chloroform as an eluent. Removal of solvent from the eluate afforded a white solid material which was crystallized repeatedly from ethanol to get colourless blocks.

Refinement top

The H atoms bound to carbon were positioned with idealized geometry using a riding model with d(C–H) = 0.93- 0.97 Å. All C–H atoms were refined with isotropic displacement parameters set to 1.2–1.5 Ueq(C). The F1, F2, and F3 fluorine atoms of the –CF3 group were disordered over two sites and refined with site occupancy factors 0.62 (3):0.38 (3).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Only the major component of the disordered CF3 group is shown.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. Packing of the title compound. C—H···π interactions are shown as dashed lines.
4-[4-(Heptyloxy)benzoyloxy]phenyl 2-oxo-7-trifluoromethyl-2H-chromene-3-carboxylate top
Crystal data top
C31H27F3O7F(000) = 592
Mr = 568.53Blocks
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Melting point: 434 K
a = 5.6810 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.036 (2) ÅCell parameters from 2837 reflections
c = 16.2954 (18) Åθ = 2.5–25°
α = 68.940 (12)°µ = 0.11 mm1
β = 88.914 (6)°T = 296 K
γ = 88.486 (7)°Block, colourless
V = 1384.8 (3) Å30.32 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4876 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 1.03 pixels mm-1θmax = 25.0°, θmin = 2.5°
phi and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1918
Tmin = 0.966, Tmax = 0.981l = 1917
8822 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.104Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.316H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1918P)2]
where P = (Fo2 + 2Fc2)/3
4876 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
0 constraints
Crystal data top
C31H27F3O7γ = 88.486 (7)°
Mr = 568.53V = 1384.8 (3) Å3
Triclinic, P1Z = 2
a = 5.6810 (3) ÅMo Kα radiation
b = 16.036 (2) ŵ = 0.11 mm1
c = 16.2954 (18) ÅT = 296 K
α = 68.940 (12)°0.32 × 0.24 × 0.18 mm
β = 88.914 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2837 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.981Rint = 0.079
8822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1040 restraints
wR(F2) = 0.316H-atom parameters constrained
S = 0.99Δρmax = 0.40 e Å3
4876 reflectionsΔρmin = 0.42 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5018 (9)1.1195 (3)0.0428 (3)0.0728 (13)
C20.4321 (7)1.0781 (3)0.1360 (3)0.0538 (10)
C30.2160 (7)1.1040 (3)0.1631 (3)0.0580 (10)
H30.11721.14480.12250.070*
C40.1518 (6)1.0687 (2)0.2499 (3)0.0519 (10)
H40.00761.08540.26790.062*
C50.2991 (6)1.0080 (2)0.3119 (3)0.0459 (9)
C60.5150 (6)0.9843 (2)0.2825 (3)0.0470 (9)
C70.5806 (7)1.0184 (3)0.1946 (3)0.0566 (10)
H70.72281.00090.17580.068*
C80.2469 (6)0.9689 (2)0.4027 (2)0.0450 (9)
H80.10430.98380.42340.054*
C90.3928 (5)0.9114 (2)0.4601 (2)0.0442 (8)
C100.6252 (6)0.8895 (2)0.4300 (3)0.0485 (9)
C110.3301 (6)0.8718 (2)0.5537 (2)0.0446 (8)
C120.3494 (6)0.7435 (2)0.6811 (3)0.0465 (9)
C130.1534 (7)0.6919 (3)0.7119 (3)0.0547 (10)
H130.04190.68680.67300.066*
C140.1256 (6)0.6483 (3)0.8005 (3)0.0551 (10)
H140.00560.61330.82220.066*
C150.2911 (6)0.6561 (2)0.8575 (3)0.0506 (9)
C160.4882 (7)0.7071 (3)0.8258 (3)0.0566 (10)
H160.60050.71200.86450.068*
C170.5167 (6)0.7501 (3)0.7371 (3)0.0591 (11)
H170.64990.78380.71510.071*
C180.0998 (6)0.6353 (3)0.9943 (3)0.0527 (10)
C190.1256 (6)0.5916 (2)1.0887 (3)0.0481 (9)
C200.0520 (6)0.6051 (3)1.1441 (3)0.0552 (10)
H200.18290.64081.11950.066*
C210.0360 (6)0.5673 (3)1.2323 (3)0.0579 (10)
H210.15720.57641.26760.069*
C220.1589 (6)0.5149 (2)1.2712 (3)0.0482 (9)
C230.3373 (6)0.5008 (2)1.2179 (3)0.0521 (9)
H230.46800.46521.24300.062*
C240.3204 (6)0.5393 (2)1.1281 (2)0.0491 (9)
H240.44190.53031.09300.059*
C250.3583 (7)0.4275 (3)1.4026 (3)0.0586 (10)
H25A0.49690.46431.38730.070*
H25B0.38400.37771.38270.070*
C260.3225 (7)0.3932 (3)1.4994 (3)0.0633 (11)
H26A0.19290.35201.51470.076*
H26B0.28030.44271.51810.076*
C270.5406 (8)0.3461 (3)1.5475 (3)0.0638 (11)
H27A0.58670.29931.52540.077*
H27B0.66710.38861.53330.077*
C280.5177 (7)0.3050 (3)1.6459 (3)0.0624 (11)
H28A0.38800.26391.66090.075*
H28B0.48100.35171.66910.075*
C290.7420 (8)0.2550 (3)1.6890 (3)0.0666 (12)
H29A0.77910.20931.66450.080*
H29B0.87050.29661.67360.080*
C300.7303 (8)0.2118 (3)1.7865 (3)0.0759 (14)
H30A0.59810.17191.80240.091*
H30B0.70170.25761.81160.091*
C310.9507 (10)0.1598 (5)1.8258 (4)0.108 (2)
H31A0.98000.11411.80140.162*
H31B0.93120.13271.88840.162*
H31C1.08140.19941.81250.162*
O10.6675 (4)0.92522 (17)0.34057 (18)0.0549 (7)
O20.7777 (5)0.8451 (2)0.4762 (2)0.0744 (10)
O30.2319 (5)0.91399 (18)0.5935 (2)0.0646 (8)
O60.0516 (5)0.6888 (2)0.9571 (2)0.0797 (10)
F10.656 (4)1.0696 (9)0.0209 (8)0.130 (5)0.62 (3)
F20.600 (4)1.1943 (10)0.0239 (8)0.120 (5)0.62 (3)
F30.346 (2)1.1281 (18)0.0147 (10)0.139 (7)0.62 (3)
F1A0.364 (7)1.091 (2)0.0042 (18)0.149 (11)0.38 (3)
F2A0.731 (3)1.100 (2)0.0245 (10)0.143 (11)0.38 (3)
F3A0.471 (6)1.2076 (13)0.0083 (16)0.140 (10)0.38 (3)
O40.3862 (5)0.78518 (16)0.59002 (17)0.0557 (7)
O70.1577 (5)0.47897 (19)1.35995 (19)0.0611 (8)
O50.2751 (4)0.61051 (18)0.94774 (17)0.0576 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.088 (3)0.074 (3)0.056 (3)0.002 (3)0.008 (3)0.023 (2)
C20.063 (2)0.059 (2)0.038 (2)0.0074 (18)0.0065 (17)0.0160 (18)
C30.057 (2)0.058 (2)0.051 (3)0.0010 (18)0.0035 (18)0.0096 (19)
C40.0464 (19)0.052 (2)0.051 (2)0.0005 (16)0.0053 (16)0.0110 (17)
C50.0412 (17)0.0395 (18)0.054 (2)0.0005 (14)0.0032 (15)0.0130 (16)
C60.0469 (19)0.0453 (18)0.047 (2)0.0002 (15)0.0064 (16)0.0154 (17)
C70.052 (2)0.061 (2)0.056 (3)0.0052 (18)0.0122 (18)0.021 (2)
C80.0376 (17)0.0443 (18)0.050 (2)0.0004 (14)0.0087 (15)0.0137 (17)
C90.0366 (17)0.0465 (19)0.049 (2)0.0017 (14)0.0058 (15)0.0177 (16)
C100.0400 (18)0.0465 (19)0.051 (2)0.0026 (15)0.0101 (16)0.0080 (16)
C110.0453 (18)0.0428 (18)0.045 (2)0.0025 (14)0.0046 (15)0.0157 (16)
C120.052 (2)0.0383 (17)0.047 (2)0.0065 (15)0.0048 (16)0.0134 (16)
C130.056 (2)0.057 (2)0.048 (2)0.0072 (17)0.0036 (17)0.0152 (18)
C140.051 (2)0.061 (2)0.047 (2)0.0108 (17)0.0033 (17)0.0123 (18)
C150.052 (2)0.049 (2)0.041 (2)0.0089 (16)0.0031 (16)0.0065 (16)
C160.050 (2)0.063 (2)0.055 (3)0.0000 (17)0.0044 (17)0.0198 (19)
C170.053 (2)0.052 (2)0.069 (3)0.0066 (17)0.0071 (19)0.018 (2)
C180.050 (2)0.056 (2)0.048 (2)0.0028 (17)0.0021 (17)0.0138 (18)
C190.0479 (19)0.0474 (19)0.043 (2)0.0010 (15)0.0024 (16)0.0100 (16)
C200.0459 (19)0.062 (2)0.053 (2)0.0130 (17)0.0005 (17)0.0158 (19)
C210.050 (2)0.071 (2)0.050 (2)0.0088 (18)0.0098 (17)0.020 (2)
C220.0475 (19)0.0475 (19)0.046 (2)0.0013 (15)0.0033 (16)0.0129 (16)
C230.0414 (18)0.055 (2)0.055 (3)0.0092 (15)0.0008 (16)0.0157 (18)
C240.0448 (18)0.058 (2)0.041 (2)0.0042 (15)0.0044 (15)0.0146 (17)
C250.062 (2)0.064 (2)0.049 (3)0.0108 (18)0.0024 (18)0.0188 (19)
C260.073 (3)0.069 (3)0.045 (3)0.003 (2)0.004 (2)0.017 (2)
C270.072 (3)0.062 (2)0.056 (3)0.007 (2)0.000 (2)0.021 (2)
C280.074 (3)0.066 (2)0.044 (2)0.008 (2)0.002 (2)0.0174 (19)
C290.077 (3)0.068 (3)0.052 (3)0.010 (2)0.000 (2)0.021 (2)
C300.076 (3)0.084 (3)0.056 (3)0.006 (2)0.003 (2)0.013 (2)
C310.088 (3)0.150 (5)0.066 (4)0.036 (3)0.003 (3)0.017 (4)
O10.0460 (13)0.0605 (16)0.0526 (17)0.0086 (11)0.0122 (12)0.0149 (13)
O20.0458 (15)0.082 (2)0.072 (2)0.0167 (14)0.0041 (14)0.0008 (17)
O30.0740 (18)0.0595 (16)0.0583 (19)0.0182 (13)0.0114 (14)0.0206 (14)
O60.0733 (19)0.097 (2)0.059 (2)0.0362 (17)0.0088 (15)0.0179 (17)
F10.161 (12)0.120 (7)0.103 (7)0.017 (7)0.066 (7)0.040 (5)
F20.191 (13)0.085 (7)0.077 (5)0.064 (8)0.047 (7)0.018 (5)
F30.124 (7)0.211 (18)0.049 (4)0.048 (8)0.016 (4)0.002 (8)
F1A0.26 (3)0.142 (16)0.059 (12)0.055 (13)0.000 (11)0.048 (12)
F2A0.077 (7)0.23 (3)0.047 (6)0.004 (10)0.025 (5)0.041 (10)
F3A0.194 (19)0.086 (8)0.089 (10)0.059 (13)0.059 (12)0.026 (7)
O40.0720 (17)0.0430 (14)0.0482 (17)0.0063 (12)0.0114 (13)0.0126 (12)
O70.0623 (16)0.0725 (18)0.0451 (17)0.0126 (13)0.0021 (12)0.0179 (14)
O50.0637 (16)0.0617 (16)0.0388 (15)0.0136 (12)0.0025 (12)0.0089 (12)
Geometric parameters (Å, º) top
C1—F21.268 (9)C17—H170.9300
C1—F31.268 (14)C18—O61.204 (4)
C1—F11.302 (12)C18—O51.376 (5)
C1—F1A1.31 (3)C18—O51.376 (5)
C1—F3A1.328 (17)C18—C191.451 (5)
C1—F2A1.379 (18)C19—C241.390 (5)
C1—C21.473 (6)C19—C201.405 (6)
C2—C71.368 (5)C20—C211.349 (5)
C2—C31.399 (6)C20—H200.9300
C3—C41.367 (6)C21—C221.389 (5)
C3—H30.9300C21—H210.9300
C4—C51.397 (5)C22—O71.351 (5)
C4—H40.9300C22—C231.389 (6)
C5—C61.401 (5)C23—C241.373 (5)
C5—C81.412 (5)C23—H230.9300
C6—O11.373 (4)C24—H240.9300
C6—C71.385 (5)C25—O71.425 (4)
C7—H70.9300C25—C261.484 (5)
C8—C91.334 (5)C25—H25A0.9700
C8—H80.9300C25—H25B0.9700
C9—C111.467 (5)C26—C271.512 (6)
C9—C101.477 (5)C26—H26A0.9700
C10—O21.197 (4)C26—H26B0.9700
C10—O11.379 (5)C27—C281.503 (6)
C11—O31.212 (5)C27—H27A0.9700
C11—O41.332 (4)C27—H27B0.9700
C12—C171.362 (5)C28—C291.528 (6)
C12—C131.381 (5)C28—H28A0.9700
C12—O41.405 (4)C28—H28B0.9700
C13—C141.368 (5)C29—C301.488 (6)
C13—H130.9300C29—H29A0.9700
C14—C151.372 (5)C29—H29B0.9700
C14—H140.9300C30—C311.505 (7)
C15—C161.383 (5)C30—H30A0.9700
C15—O51.390 (4)C30—H30B0.9700
C15—O51.390 (4)C31—H31A0.9600
C16—C171.368 (6)C31—H31B0.9600
C16—H160.9300C31—H31C0.9600
F2—C1—F3107.6 (10)O6—C18—O5121.0 (4)
F2—C1—F1104.7 (8)O6—C18—C19126.5 (4)
F3—C1—F1100.0 (12)O5—C18—C19112.5 (3)
F2—C1—F1A130.1 (13)O5—C18—C19112.5 (3)
F1—C1—F1A82.3 (17)C24—C19—C20117.6 (4)
F3—C1—F3A77.9 (13)C24—C19—C18123.9 (4)
F1—C1—F3A128.4 (10)C20—C19—C18118.5 (3)
F1A—C1—F3A103.1 (17)C21—C20—C19121.2 (3)
F2—C1—F2A77.5 (10)C21—C20—H20119.4
F3—C1—F2A118.2 (12)C19—C20—H20119.4
F1A—C1—F2A107.4 (19)C20—C21—C22120.9 (4)
F3A—C1—F2A107.3 (12)C20—C21—H21119.6
F2—C1—C2114.1 (6)C22—C21—H21119.6
F3—C1—C2117.8 (8)O7—C22—C23124.3 (3)
F1—C1—C2111.0 (6)O7—C22—C21116.5 (3)
F1A—C1—C2108.6 (14)C23—C22—C21119.1 (4)
F3A—C1—C2115.2 (10)C24—C23—C22119.9 (3)
F2A—C1—C2114.4 (7)C24—C23—H23120.1
C7—C2—C3121.3 (4)C22—C23—H23120.1
C7—C2—C1120.2 (4)C23—C24—C19121.4 (4)
C3—C2—C1118.4 (4)C23—C24—H24119.3
C4—C3—C2119.3 (3)C19—C24—H24119.3
C4—C3—H3120.3O7—C25—C26110.2 (3)
C2—C3—H3120.3O7—C25—H25A109.6
C3—C4—C5121.1 (4)C26—C25—H25A109.6
C3—C4—H4119.4O7—C25—H25B109.6
C5—C4—H4119.4C26—C25—H25B109.6
C4—C5—C6118.0 (4)H25A—C25—H25B108.1
C4—C5—C8124.7 (3)C25—C26—C27111.9 (4)
C6—C5—C8117.3 (3)C25—C26—H26A109.2
O1—C6—C7117.9 (3)C27—C26—H26A109.2
O1—C6—C5120.6 (3)C25—C26—H26B109.2
C7—C6—C5121.5 (3)C27—C26—H26B109.2
C2—C7—C6118.7 (4)H26A—C26—H26B107.9
C2—C7—H7120.7C28—C27—C26115.8 (4)
C6—C7—H7120.7C28—C27—H27A108.3
C9—C8—C5123.0 (3)C26—C27—H27A108.3
C9—C8—H8118.5C28—C27—H27B108.3
C5—C8—H8118.5C26—C27—H27B108.3
C8—C9—C11121.1 (3)H27A—C27—H27B107.4
C8—C9—C10119.8 (3)C27—C28—C29112.5 (4)
C11—C9—C10119.1 (3)C27—C28—H28A109.1
O2—C10—O1118.2 (3)C29—C28—H28A109.1
O2—C10—C9125.7 (4)C27—C28—H28B109.1
O1—C10—C9116.0 (3)C29—C28—H28B109.1
O3—C11—O4123.4 (4)H28A—C28—H28B107.8
O3—C11—C9122.8 (3)C30—C29—C28115.2 (4)
O4—C11—C9113.7 (3)C30—C29—H29A108.5
C17—C12—C13121.2 (4)C28—C29—H29A108.5
C17—C12—O4119.0 (3)C30—C29—H29B108.5
C13—C12—O4119.7 (3)C28—C29—H29B108.5
C14—C13—C12119.1 (3)H29A—C29—H29B107.5
C14—C13—H13120.5C29—C30—C31113.4 (5)
C12—C13—H13120.5C29—C30—H30A108.9
C13—C14—C15120.1 (3)C31—C30—H30A108.9
C13—C14—H14120.0C29—C30—H30B108.9
C15—C14—H14120.0C31—C30—H30B108.9
C14—C15—C16120.4 (4)H30A—C30—H30B107.7
C14—C15—O5122.2 (3)C30—C31—H31A109.5
C16—C15—O5117.3 (3)C30—C31—H31B109.5
C14—C15—O5122.2 (3)H31A—C31—H31B109.5
C16—C15—O5117.3 (3)C30—C31—H31C109.5
C17—C16—C15119.5 (4)H31A—C31—H31C109.5
C17—C16—H16120.3H31B—C31—H31C109.5
C15—C16—H16120.3C6—O1—C10123.1 (3)
C12—C17—C16119.8 (3)C11—O4—C12117.5 (3)
C12—C17—H17120.1C22—O7—C25118.3 (3)
C16—C17—H17120.1C18—O5—C15118.6 (3)
O6—C18—O5121.0 (4)
F2—C1—C2—C793.5 (14)O5—C15—C16—C17177.2 (3)
F3—C1—C2—C7139.0 (15)C13—C12—C17—C161.9 (6)
F1—C1—C2—C724.5 (13)O4—C12—C17—C16177.4 (3)
F1A—C1—C2—C7113 (2)C15—C16—C17—C121.0 (6)
F3A—C1—C2—C7132 (2)O6—C18—C19—C24171.3 (4)
F2A—C1—C2—C76.8 (19)O5—C18—C19—C247.5 (5)
F2—C1—C2—C384.1 (14)O5—C18—C19—C247.5 (5)
F3—C1—C2—C343.4 (16)O6—C18—C19—C206.4 (6)
F1—C1—C2—C3157.9 (12)O5—C18—C19—C20174.8 (3)
F1A—C1—C2—C369 (2)O5—C18—C19—C20174.8 (3)
F3A—C1—C2—C346 (2)C24—C19—C20—C211.3 (6)
F2A—C1—C2—C3170.8 (19)C18—C19—C20—C21179.1 (3)
C7—C2—C3—C40.2 (6)C19—C20—C21—C221.1 (6)
C1—C2—C3—C4177.7 (4)C20—C21—C22—O7179.2 (3)
C2—C3—C4—C50.6 (6)C20—C21—C22—C230.9 (6)
C3—C4—C5—C60.0 (5)O7—C22—C23—C24179.1 (3)
C3—C4—C5—C8179.7 (3)C21—C22—C23—C240.8 (6)
C4—C5—C6—O1179.7 (3)C22—C23—C24—C191.1 (6)
C8—C5—C6—O10.0 (5)C20—C19—C24—C231.3 (5)
C4—C5—C6—C71.1 (5)C18—C19—C24—C23178.9 (3)
C8—C5—C6—C7179.2 (3)O7—C25—C26—C27174.3 (3)
C3—C2—C7—C60.9 (6)C25—C26—C27—C28177.1 (3)
C1—C2—C7—C6176.6 (4)C26—C27—C28—C29177.3 (4)
O1—C6—C7—C2179.3 (3)C27—C28—C29—C30179.4 (4)
C5—C6—C7—C21.6 (6)C28—C29—C30—C31177.3 (5)
C4—C5—C8—C9179.7 (3)C7—C6—O1—C10177.5 (3)
C6—C5—C8—C90.0 (5)C5—C6—O1—C103.3 (5)
C5—C8—C9—C11179.5 (3)O2—C10—O1—C6173.3 (3)
C5—C8—C9—C102.8 (5)C9—C10—O1—C65.9 (5)
C8—C9—C10—O2173.4 (4)O3—C11—O4—C126.4 (5)
C11—C9—C10—O24.3 (6)C9—C11—O4—C12175.1 (3)
C8—C9—C10—O15.6 (5)C17—C12—O4—C1183.4 (4)
C11—C9—C10—O1176.7 (3)C13—C12—O4—C11101.0 (4)
C8—C9—C11—O340.1 (5)C23—C22—O7—C254.0 (5)
C10—C9—C11—O3137.6 (4)C21—C22—O7—C25177.7 (3)
C8—C9—C11—O4138.4 (3)C26—C25—O7—C22179.4 (3)
C10—C9—C11—O443.9 (4)O6—C18—O5—O50.0 (10)
C17—C12—C13—C141.4 (6)C19—C18—O5—O50.0 (9)
O4—C12—C13—C14176.9 (3)O6—C18—O5—C157.6 (6)
C12—C13—C14—C150.0 (6)O5—C18—O5—C150 (100)
C13—C14—C15—C160.8 (6)C19—C18—O5—C15171.3 (3)
C13—C14—C15—O5177.5 (4)C16—C15—O5—O50.0 (8)
C13—C14—C15—O5177.5 (4)C14—C15—O5—C1869.4 (5)
C14—C15—C16—C170.4 (6)C16—C15—O5—C18113.8 (4)
O5—C15—C16—C17177.2 (3)O5—C15—O5—C180 (100)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12–C17 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.533.313 (5)142
C8—H8···O3i0.932.443.277 (4)150
C16—H16···O6ii0.932.453.350 (5)163
C24—H24···O50.932.452.759 (5)100
C14—H14···Cg2iii0.932.813.517 (5)133
C23—H23···Cg1iv0.932.943.650 (5)134
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12–C17 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.533.313 (5)141.6
C8—H8···O3i0.932.443.277 (4)150.2
C16—H16···O6ii0.932.453.350 (5)163.4
C24—H24···O50.932.452.759 (5)99.6
C14—H14···Cg2iii0.932.813.517 (5)133
C23—H23···Cg1iv0.932.943.650 (5)134
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Vijithkumar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection. BSPM thanks H. T. Srinivasa, Raman Research Institute, Bangalore, for his help with the characterization.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalakshamurthy, B. S., Devarajegowda, H. C., Srinivasa, H. T., Sreenivasa, S. & Vijithkumar, (2013). Acta Cryst. E69, o621–o622.  Google Scholar
First citationPalakshamurthy, B. S., Sreenivasa, S., Srinivasa, H. T., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o212.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1355-o1356
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds