supplementary materials


kp2455 scheme

Acta Cryst. (2013). E69, m438    [ doi:10.1107/S160053681301831X ]

Triaqua(pyrazole-4-carboxylato-[kappa]N1)lithium

W. Starosta and J. Leciejewicz

Abstract top

In the monomeric title complex, [Li(C4H3N2O2)(H2O)3], the Li+ cation is coordinated by a pyrazole N atom and three water molecules in a distorted tetrahedral geometry. The carboxylate group is deprotonated. The complex molecules are involved in O-H...O and N-H...O hydrogen bonding, forming layers stacked along the b axis.

Comment top

The orthorhombic structure of the title compound is composed of dicrete mononuclear molecules in which Li1+ is coordinated by the non-protonated hetero-ring N atom of the ligand molecule and three aqua O atoms at the apices of distorted tetrahedron. The observed Li—O and Li—N bond distances and bond angles reveal usual values (Table 2). The carboxylic group is deprotonated. It makes a dihedral angle of 10.7 (2)° with the almost planar [r.m.s.0.0014 (1) Å] pyrazole ring. Bond distances and bond angles within the latter are close to those observed in the structure of the parent acid (Foces-Foces et al., 2001). Complex molecules form layers parallel to the unit cell ac plane (Fig.2) and are stacked along the b axis (Fig.3). Coordinated water molecules are active as donors and acceptors in an extended hydrogen bond system in which carboxylate O atoms are as acceptors (Table 3). The protonated hetero-ring N atom is as a donor and a carboxylate O atom scts as an acceptor is also observed.

Related literature top

For the structure of pyrazole-4-carboxylic acid, see: Foces-Foces et al. (2001).

Experimental top

The compound was synthetized using 1 mmol of LiOH (Aldrich) and a small excess over 1 mmol of pyrazole-4-carboxylic acid (Aldrich) dissolved in 50 mL of doubly distilled water. The solution was refluxed with stirring for 5 h and then left to crystallize at room temperature. Colourless single-crystal blocks deposited after a week. They were washed with cold ethanol and dried in the air.

Refinement top

Hydrogen atoms attached to the water molecules and protonated hetero-ring N atom were located in a difference map and refined isotropically. Two H atoms attached to pyrazole C atoms were located at calculated positions and treated as riding on the parent atoms with C—H=0.93 Å.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecule of the title complex with atom labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A single molecular layer viewed along the b axis.
[Figure 3] Fig. 3. Molecular layers as viewed along the a direction.
Triaqua(pyrazole-4-carboxylato-κN1)lithium top
Crystal data top
[Li(C4H3N2O2)(H2O)3]F(000) = 360
Mr = 172.07Dx = 1.484 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 7.2817 (15) Åθ = 6–15°
b = 6.9635 (14) ŵ = 0.13 mm1
c = 15.186 (3) ÅT = 293 K
V = 770.0 (3) Å3Block, colourless
Z = 40.25 × 0.18 × 0.12 mm
Data collection top
Kuma KM4 four-circle
diffractometer
901 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.1°, θmin = 2.7°
profile data from ω/2θ scanh = 010
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 09
Tmin = 0.967, Tmax = 0.983l = 021
1161 measured reflections3 standard reflections every 200 reflections
1161 independent reflections intensity decay: 5.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0972P)2]
where P = (Fo2 + 2Fc2)/3
1161 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.34 e Å3
7 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Li(C4H3N2O2)(H2O)3]V = 770.0 (3) Å3
Mr = 172.07Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.2817 (15) ŵ = 0.13 mm1
b = 6.9635 (14) ÅT = 293 K
c = 15.186 (3) Å0.25 × 0.18 × 0.12 mm
Data collection top
Kuma KM4 four-circle
diffractometer
901 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.000
Tmin = 0.967, Tmax = 0.983θmax = 30.1°
1161 measured reflections3 standard reflections every 200 reflections
1161 independent reflections intensity decay: 5.9%
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.44 e Å3
1161 reflectionsAbsolute structure: ?
133 parametersAbsolute structure parameter: ?
7 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5914 (2)0.4578 (3)0.32056 (11)0.0290 (4)
O10.7088 (2)0.5037 (3)0.18706 (12)0.0332 (4)
N20.1533 (3)0.4966 (3)0.10494 (15)0.0333 (5)
C40.3883 (2)0.4946 (3)0.20198 (14)0.0217 (4)
N10.0900 (2)0.5047 (3)0.18846 (14)0.0287 (4)
H10.02460.51030.20190.034*
C60.5766 (3)0.4856 (3)0.23794 (14)0.0214 (4)
C30.3351 (3)0.4911 (4)0.11354 (15)0.0335 (5)
H30.41670.48560.06650.040*
C50.2250 (3)0.5030 (3)0.24788 (17)0.0281 (4)
H50.21150.50670.30880.034*
Li10.0107 (6)0.4846 (6)0.0115 (3)0.0300 (8)
O40.1074 (2)0.6710 (3)0.09637 (13)0.0299 (4)
O30.2382 (2)0.5471 (3)0.01447 (13)0.0319 (4)
O50.0491 (3)0.2401 (3)0.06531 (17)0.0444 (5)
H510.121 (4)0.161 (4)0.043 (3)0.044 (10)*
H310.277 (5)0.650 (4)0.005 (3)0.044 (10)*
H420.043 (4)0.751 (4)0.123 (2)0.039 (9)*
H520.007 (5)0.177 (7)0.100 (3)0.073 (14)*
H410.192 (4)0.631 (5)0.126 (2)0.040 (8)*
H320.275 (6)0.554 (7)0.0665 (16)0.055 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0241 (7)0.0453 (9)0.0177 (6)0.0001 (6)0.0027 (6)0.0022 (6)
O10.0169 (7)0.0595 (11)0.0230 (8)0.0000 (6)0.0001 (6)0.0051 (7)
N20.0198 (8)0.0599 (13)0.0203 (8)0.0004 (8)0.0028 (8)0.0006 (8)
C40.0149 (7)0.0327 (10)0.0176 (9)0.0008 (6)0.0011 (7)0.0013 (7)
N10.0162 (7)0.0465 (11)0.0236 (10)0.0002 (6)0.0010 (7)0.0021 (7)
C60.0160 (7)0.0279 (8)0.0203 (9)0.0007 (6)0.0023 (7)0.0007 (7)
C30.0186 (9)0.0639 (15)0.0180 (11)0.0019 (9)0.0011 (8)0.0004 (10)
C50.0175 (8)0.0458 (12)0.0210 (9)0.0004 (8)0.0010 (8)0.0012 (8)
Li10.0259 (15)0.0370 (18)0.0270 (18)0.0004 (14)0.0000 (16)0.0022 (15)
O40.0282 (7)0.0381 (9)0.0235 (6)0.0039 (6)0.0062 (7)0.0043 (6)
O30.0277 (7)0.0433 (9)0.0248 (8)0.0045 (6)0.0015 (6)0.0026 (8)
O50.0602 (13)0.0355 (9)0.0376 (9)0.0057 (9)0.0118 (10)0.0080 (8)
Geometric parameters (Å, º) top
O2—C61.274 (3)C5—H50.9300
O1—C61.240 (3)Li1—O31.905 (5)
N2—C31.331 (3)Li1—O51.909 (4)
N2—N11.350 (3)Li1—O41.960 (5)
Li1—N22.053 (5)O4—H420.835 (19)
C4—C51.379 (3)O4—H410.813 (19)
C4—C31.398 (3)O3—H310.823 (19)
C4—C61.478 (3)O3—H320.84 (2)
N1—C51.334 (3)O5—H510.829 (19)
N1—H10.8600O5—H520.80 (2)
C3—H30.9300
C3—N2—N1104.39 (18)C4—C5—H5126.5
C3—N2—Li1125.9 (2)O3—Li1—O5115.6 (2)
N1—N2—Li1129.66 (19)O3—Li1—O4109.1 (2)
C5—C4—C3104.33 (18)O5—Li1—O4104.9 (2)
C5—C4—C6128.0 (2)O3—Li1—N2107.0 (2)
C3—C4—C6127.69 (19)O5—Li1—N2109.3 (2)
C5—N1—N2112.55 (18)O4—Li1—N2110.9 (2)
C5—N1—H1123.7Li1—O4—H42124 (2)
N2—N1—H1123.7Li1—O4—H41114 (3)
O1—C6—O2124.3 (2)H42—O4—H41112 (4)
O1—C6—C4119.05 (19)Li1—O3—H31117 (3)
O2—C6—C4116.66 (19)Li1—O3—H32121 (3)
N2—C3—C4111.67 (19)H31—O3—H32100 (4)
N2—C3—H3124.2Li1—O5—H51121 (3)
C4—C3—H3124.2Li1—O5—H52134 (4)
N1—C5—C4107.1 (2)H51—O5—H52103 (5)
N1—C5—H5126.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H32···O1i0.84 (2)1.87 (3)2.666 (3)159 (4)
O4—H41···O2ii0.81 (2)1.88 (2)2.684 (2)171 (4)
O5—H52···O2iii0.80 (2)2.04 (3)2.813 (3)163 (5)
O4—H42···O2iv0.84 (2)1.94 (2)2.770 (3)174 (4)
O3—H31···O4v0.82 (2)2.05 (3)2.820 (3)156 (4)
O5—H51···O3vi0.83 (2)1.98 (2)2.804 (3)172 (4)
N1—H1···O1i0.861.962.776 (3)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z1/2; (iii) x+1/2, y1/2, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+3/2, z; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Li(C4H3N2O2)(H2O)3]
Mr172.07
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)7.2817 (15), 6.9635 (14), 15.186 (3)
V3)770.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.25 × 0.18 × 0.12
Data collection
DiffractometerKuma KM4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
1161, 1161, 901
Rint0.000
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.01
No. of reflections1161
No. of parameters133
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—N22.053 (5)Li1—O51.909 (4)
Li1—O31.905 (5)Li1—O41.960 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H32···O1i0.84 (2)1.87 (3)2.666 (3)159 (4)
O4—H41···O2ii0.813 (19)1.88 (2)2.684 (2)171 (4)
O5—H52···O2iii0.80 (2)2.04 (3)2.813 (3)163 (5)
O4—H42···O2iv0.835 (19)1.938 (19)2.770 (3)174 (4)
O3—H31···O4v0.823 (19)2.05 (3)2.820 (3)156 (4)
O5—H51···O3vi0.829 (19)1.98 (2)2.804 (3)172 (4)
N1—H1···O1i0.861.962.776 (3)159.3
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z1/2; (iii) x+1/2, y1/2, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+3/2, z; (vi) x+1/2, y+1/2, z.
Acknowledgements top

No acknowledgments

references
References top

Foces-Foces, G., Echevarria, A., Jagerovic, N., Alkorta, I., Elguero, L., Langer, U., Klein, O., Minguet-Banvehi, M. & Limbach, H.-H. (2001). J. Am. Chem. Soc. 123, 7898–7906.

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.

Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.

Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd., Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.