metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m475-m476

trans-Acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)[tris­­(furan-2-yl)phosphane-κP]molybdenum(II)

aDepartment of Chemistry, Carleton College, 1 N. College St, Northfield, MN 55057, USA, and bDepartment of Chemistry, St Catherine University, 2004 Randolph Ave., St Paul, MN 55105, USA
*Correspondence e-mail: mwhited@carleton.edu

(Received 4 July 2013; accepted 24 July 2013; online 31 July 2013)

The title compound, [Mo(C5H5)(C2H3O)(C12H9O3P)(CO)2], was prepared by reaction of [Mo(C5H5)(CO)3(CH3)] with tris­(furan-2-yl)phosphane. The MoII atom exhibits a four-legged piano-stool coordination geometry with the acetyl and phosphine ligands trans to each other. The O atom of the acetyl ligand points down, away from the Cp ring. In the crystal, mol­ecules form centrosymmetrical dimers via ππ inter­actions between furyl rings [the centroid–centroid distance is 3.396 (4) Å]. The dimers are linked by C—H⋯O hydrogen bonds into layers parallel to (100).

Related literature

For synthetic details for a related complex, see: Gladysz et al. (1979[Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553-558.]). For related structures, see: Churchill & Fennessey (1968[Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.]); Barnett et al. (1972[Barnett, K. W., Pollman, T. G. & Solomon, T. W. (1972). J. Organomet. Chem. 36, C23-C26.]); Michelini-Rodriguez et al. (1993[Michelini-Rodriguez, I., Romero, A. L., Kapoor, R. N., Cervanres-Lee, F. & Pannell, K. H. (1993). Organometallics, 12, 1221-1224.]); Adams et al. (1997[Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589-3598.], 2000[Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (2000). J. Chem. Soc. Dalton Trans. pp. 3074-3081.]); Whited et al. (2012[Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158-m1159.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C5H5)(C2H3O)(C12H9O3P)(CO)2]

  • Mr = 492.28

  • Monoclinic, P 21 /c

  • a = 8.050 (2) Å

  • b = 15.762 (4) Å

  • c = 16.073 (4) Å

  • β = 102.852 (8)°

  • V = 1988.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 173 K

  • 0.24 × 0.17 × 0.15 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.709, Tmax = 0.890

  • 16222 measured reflections

  • 4539 independent reflections

  • 3799 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 1.06

  • 4539 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—P1 2.4189 (8)
Mo1—C1 2.253 (4)
Mo1—C3 1.968 (3)
Mo1—C4 1.982 (3)
Mo1—C5 2.341 (4)
Mo1—C6 2.332 (4)
Mo1—C7 2.359 (3)
Mo1—C8 2.374 (4)
Mo1—C9 2.382 (4)
O1—C1 1.227 (4)
O2—C3 1.150 (4)
O3—C4 1.148 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 1.00 2.38 3.324 (4) 158
C11—H11⋯O1i 0.95 2.40 3.166 (5) 137
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku Americas and Rigaku, 2011[Rigaku Americas and Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku Americas and Rigaku, 2010[Rigaku Americas and Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Synthesis of the title complex, [Mo(C5H5)(C2H3O)(CO)2(C12H12O3P)] (I), has not previously been reported, though several analogues containing various phosphine ligands have been reported and their reactivity studied (Adams et al., 1997; Barnett et al., 1972). The most closely related complexes, for which structural information is available, contain a triphenylphosphine or methyldiphenylphosphine ligand (Churchill & Fennessey, 1968; Whited et al., 2012).

The molecular structure of I consists of a Mo(II) atom coordinated to a cyclopentadienyl ring in an η5 fashion, two CO ligands, one tris(furan-2-yl)phosphane ligand, and one acetyl ligand (Fig. 1, Table 1). The orientation of the CO ligands can be described as trans (Fig. 2). The Mo—Cp centroid distance is 2.029 (2) Å.

In the crystal, the molecules of I form centrosymmetrical dimers via the ππ interactions between furyl rings (the centroid-to-centroid distance is 3.396 (4) Å, Fig. 3).

There are several particularly short intermolecular distances involving H atoms. One short contact (2.38 Å) is present between O1 of the acetyl carbonyl on one Mo complex and H8 of a Cp ring on another (Table 2). Another short contact (2.40 Å) involves O1 of the acetyl group of one Mo complex and H11 of a furyl group on another (Table 2). These contacts between the acetyl carbonyl and hydrogen atoms may contribute to the unusual geometry adopted by the acetyl ligand, where the carbonyl points down, away from the Cp ring. In related structures reported by this laboratory (Whited et al., 2012) and others (Churchill & Fennessey, 1968; Michelini-Rodriguez et al., 1993; Adams et al., 1997, 2000), the carbonyl points up toward the Cp ring. These hydrogen-bonding interactions lead to the formation of layers parallel to (100), as shown in Fig. 4.

Related literature top

For synthetic details for a related complex, see: Gladysz et al. (1979). For related structures, see: Churchill & Fennessey (1968); Barnett et al. (1972); Michelini-Rodriguez et al. (1993); Adams et al. (1997, 2000); Whited et al. (2012).

Experimental top

CpMo(CO)3(CH3). This compound was prepared by a modification of the method used by Gladysz et al. (1979), as previously reported by Whited et al. (2012).

CpMo(CO)2(P(2-Fur)3)(COCH3) (I). In an inert-atmosphere glove box, CpMo(CO)3(CH3) (30.6 mg, 0.118 mmol) was dissolved in 2 ml acetonitrile. In a separate vial, tris(furan-2-yl)phosphane (42.0 mg, 0.181 mmol) was dissolved in 2 ml acetonitrile. The vials were combined and the resulting solution was stirred for 1 week. Solvent was removed in vacuo, leaving an orange oil that was triturated with pentane (5 mL) and isolated by filtration to afford the desired product in pure form as a yellow powder (21.6 mg, 37.2%), as confirmed by IR and NMR (1H, 13C, and 31P) spectral analyses. Crystalline material was obtained as yellow-orange prisms by vapor diffusion of pentane into a concentrated solution of I in diethyl ether at 233 K.

Refinement top

H-atoms were treated in calculated positions and refined in the riding model approximation with distances of C—H = 0.95, 1.00 and 0.98 Å for the furanyl, cyclopentadienyl and methyl groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2 for furanyl and cyclopentadienyl groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation. The maximum and minimum electron densities in the final difference Fourier map are located 0.98 and 0.77 Å, respectively, from atom Mo1.

Eight low-angle reflections were rejected from the high-quality data set due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in this data set (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced into this routine structure determination.

Computing details top

Data collection: CrystalClear (Rigaku Americas and Rigaku, 2011); cell refinement: CrystalClear (Rigaku Americas and Rigaku, 2011); data reduction: CrystalClear (Rigaku Americas and Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku Americas and Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku Americas and Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of I (50% probability ellipsoids for non-H atoms). H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of I perpendicular to Cp least-squares plane showing trans CO orientation.
[Figure 3] Fig. 3. The centrosymmetrical dimers of I.
[Figure 4] Fig. 4. Crystal packing of I along the b axis showing the layers parallel to (100). Dashed lines indicate the intermolecular C—H···O hydrogen bonds.
trans-Acetyldicarbonyl(η5-cyclopentadienyl)[tris(furan-2-yl)phosphane-κP]molybdenum(II) top
Crystal data top
[Mo(C5H5)(C2H3O)(C12H9O3P)(CO)2]F(000) = 992.00
Mr = 492.28Dx = 1.644 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 13392 reflections
a = 8.050 (2) Åθ = 3.2–27.6°
b = 15.762 (4) ŵ = 0.78 mm1
c = 16.073 (4) ÅT = 173 K
β = 102.852 (8)°Prism, orange
V = 1988.4 (9) Å30.24 × 0.17 × 0.15 mm
Z = 4
Data collection top
Rigaku XtaLAB mini
diffractometer
3799 reflections with F2 > 2σ(F2)
Detector resolution: 6.827 pixels mm-1Rint = 0.044
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 109
Tmin = 0.709, Tmax = 0.890k = 2020
16222 measured reflectionsl = 2020
4539 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.025P)2 + 1.9823P]
where P = (Fo2 + 2Fc2)/3
4539 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.52 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Mo(C5H5)(C2H3O)(C12H9O3P)(CO)2]V = 1988.4 (9) Å3
Mr = 492.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.050 (2) ŵ = 0.78 mm1
b = 15.762 (4) ÅT = 173 K
c = 16.073 (4) Å0.24 × 0.17 × 0.15 mm
β = 102.852 (8)°
Data collection top
Rigaku XtaLAB mini
diffractometer
4539 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3799 reflections with F2 > 2σ(F2)
Tmin = 0.709, Tmax = 0.890Rint = 0.044
16222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.55 e Å3
4539 reflectionsΔρmin = 0.52 e Å3
263 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.28931 (3)0.203772 (14)0.114671 (14)0.01996 (7)
P10.43789 (8)0.33427 (4)0.16296 (4)0.02053 (15)
O10.2805 (4)0.17390 (16)0.07804 (14)0.0472 (6)
O20.6441 (3)0.15779 (14)0.07963 (13)0.0357 (5)
O30.1064 (3)0.33025 (14)0.02625 (14)0.0419 (6)
O40.7480 (3)0.2905 (2)0.25444 (14)0.0615 (9)
O50.3794 (3)0.49098 (13)0.22768 (13)0.0345 (5)
O60.6466 (3)0.45252 (13)0.11535 (13)0.0334 (5)
C10.2624 (4)0.1388 (2)0.01250 (19)0.0338 (7)
C20.2310 (7)0.0460 (3)0.0174 (3)0.0706 (14)
C30.5144 (4)0.17806 (17)0.09207 (16)0.0243 (6)
C40.1775 (4)0.28439 (17)0.02493 (18)0.0282 (7)
C50.0773 (4)0.11426 (19)0.14393 (19)0.0331 (7)
C60.2380 (4)0.08037 (19)0.18492 (19)0.0354 (7)
C70.3150 (4)0.1382 (2)0.24888 (18)0.0356 (7)
C80.2035 (4)0.2073 (2)0.24670 (18)0.0333 (7)
C90.0548 (4)0.19244 (19)0.18202 (19)0.0325 (7)
C100.6004 (4)0.32891 (18)0.26045 (17)0.0247 (6)
C110.6050 (4)0.3458 (2)0.34274 (18)0.0342 (7)
C120.7657 (5)0.3184 (3)0.39118 (19)0.0423 (9)
C130.8462 (5)0.2861 (4)0.3364 (3)0.0703 (15)
C140.3049 (4)0.41841 (17)0.18893 (17)0.0254 (6)
C150.1340 (4)0.4247 (2)0.17555 (19)0.0354 (7)
C160.0987 (5)0.5054 (2)0.2072 (2)0.0406 (8)
C170.2480 (5)0.5421 (2)0.2373 (2)0.0393 (8)
C180.5519 (4)0.38037 (17)0.08986 (16)0.0237 (6)
C190.5672 (4)0.35793 (19)0.01093 (18)0.0315 (7)
C200.6773 (4)0.4186 (2)0.0150 (2)0.0374 (8)
C210.7201 (4)0.4734 (2)0.0491 (2)0.0392 (8)
H2A0.11920.03390.00550.0847*
H2B0.31960.01700.02470.0847*
H2C0.23360.02560.07470.0847*
H50.01100.08430.10030.0397*
H60.28120.02240.17580.0425*
H70.42360.12880.29220.0427*
H80.22100.25590.28770.0399*
H90.05060.22800.16980.0390*
H110.51680.37150.36460.0410*
H120.80640.32270.45120.0507*
H130.95760.26260.35110.0844*
H150.05290.38330.15000.0425*
H160.01050.52850.20680.0487*
H170.26200.59690.26240.0471*
H190.51470.31080.02130.0378*
H200.71280.41960.06750.0449*
H210.79250.52100.04900.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01978 (12)0.02049 (12)0.01972 (11)0.00095 (9)0.00462 (8)0.00145 (9)
P10.0182 (4)0.0218 (4)0.0205 (4)0.0010 (3)0.0019 (3)0.0024 (3)
O10.0551 (16)0.0590 (16)0.0275 (12)0.0048 (13)0.0091 (11)0.0021 (11)
O20.0297 (12)0.0416 (13)0.0372 (12)0.0077 (10)0.0102 (10)0.0013 (10)
O30.0439 (14)0.0342 (12)0.0386 (13)0.0032 (11)0.0101 (11)0.0062 (10)
O40.0363 (14)0.120 (3)0.0239 (11)0.0383 (15)0.0028 (10)0.0109 (13)
O50.0311 (11)0.0289 (11)0.0408 (12)0.0030 (9)0.0017 (10)0.0134 (9)
O60.0317 (12)0.0309 (11)0.0359 (12)0.0088 (9)0.0038 (9)0.0006 (9)
C10.0271 (16)0.0452 (19)0.0288 (16)0.0002 (14)0.0053 (13)0.0068 (14)
C20.108 (4)0.050 (3)0.065 (3)0.035 (3)0.044 (3)0.029 (2)
C30.0289 (15)0.0229 (14)0.0211 (13)0.0022 (12)0.0057 (11)0.0016 (11)
C40.0254 (15)0.0255 (15)0.0310 (15)0.0065 (12)0.0003 (12)0.0062 (12)
C50.0334 (17)0.0321 (16)0.0370 (16)0.0103 (13)0.0148 (13)0.0029 (13)
C60.0445 (19)0.0270 (16)0.0406 (17)0.0012 (14)0.0218 (15)0.0086 (13)
C70.0347 (17)0.048 (2)0.0257 (15)0.0015 (15)0.0112 (13)0.0113 (14)
C80.0359 (17)0.0427 (18)0.0249 (14)0.0079 (15)0.0147 (13)0.0057 (13)
C90.0267 (15)0.0382 (17)0.0363 (16)0.0044 (13)0.0150 (13)0.0002 (13)
C100.0189 (13)0.0305 (15)0.0243 (14)0.0023 (11)0.0039 (11)0.0020 (11)
C110.0296 (16)0.0474 (19)0.0258 (15)0.0029 (14)0.0068 (13)0.0042 (13)
C120.0366 (18)0.064 (3)0.0228 (15)0.0043 (16)0.0011 (13)0.0006 (15)
C130.039 (2)0.138 (5)0.0272 (17)0.041 (3)0.0083 (16)0.006 (3)
C140.0267 (15)0.0216 (14)0.0265 (14)0.0027 (12)0.0028 (11)0.0060 (11)
C150.0245 (15)0.0375 (18)0.0432 (18)0.0015 (14)0.0052 (13)0.0118 (14)
C160.0329 (17)0.047 (2)0.0402 (18)0.0157 (15)0.0039 (14)0.0132 (15)
C170.047 (2)0.0330 (17)0.0368 (17)0.0138 (15)0.0060 (15)0.0141 (14)
C180.0226 (14)0.0218 (13)0.0249 (13)0.0017 (11)0.0012 (11)0.0012 (11)
C190.0364 (17)0.0312 (16)0.0269 (15)0.0001 (14)0.0069 (13)0.0021 (12)
C200.0359 (17)0.0452 (19)0.0335 (16)0.0007 (15)0.0124 (14)0.0131 (15)
C210.0298 (17)0.0414 (19)0.0445 (19)0.0075 (15)0.0045 (14)0.0147 (15)
Geometric parameters (Å, º) top
Mo1—P12.4189 (8)C10—C111.342 (4)
Mo1—C12.253 (4)C11—C121.421 (5)
Mo1—C31.968 (3)C12—C131.307 (6)
Mo1—C41.982 (3)C14—C151.348 (5)
Mo1—C52.341 (4)C15—C161.422 (5)
Mo1—C62.332 (4)C16—C171.325 (5)
Mo1—C72.359 (3)C18—C191.349 (4)
Mo1—C82.374 (4)C19—C201.427 (5)
Mo1—C92.382 (4)C20—C211.330 (5)
P1—C101.806 (3)C2—H2A0.980
P1—C141.810 (3)C2—H2B0.980
P1—C181.797 (3)C2—H2C0.980
O1—C11.227 (4)C5—H51.000
O2—C31.150 (4)C6—H61.000
O3—C41.148 (4)C7—H71.000
O4—C101.356 (4)C8—H81.000
O4—C131.379 (4)C9—H91.000
O5—C141.375 (4)C11—H110.950
O5—C171.365 (4)C12—H120.950
O6—C181.380 (4)C13—H130.950
O6—C211.368 (5)C15—H150.950
C1—C21.484 (6)C16—H160.950
C5—C61.419 (5)C17—H170.950
C5—C91.406 (5)C19—H190.950
C6—C71.410 (5)C20—H200.950
C7—C81.406 (5)C21—H210.950
C8—C91.420 (4)
P1···O33.573 (3)C2···H5xiii2.8413
O1···O23.428 (3)C2···H11i3.5382
O1···O33.041 (4)C3···H9iv3.5348
O1···C32.956 (4)C3···H17v2.9114
O1···C42.659 (4)C4···H12ii3.4063
O2···O43.453 (4)C4···H13ii3.0478
O2···C13.114 (4)C4···H21vi3.3179
O2···C183.597 (4)C5···H2Axiii3.3681
O2···C193.354 (4)C5···H2Cxiii3.3355
O3···C13.258 (4)C5···H12ii3.5118
O3···C153.531 (4)C5···H16ix2.9065
O4···O63.373 (4)C5···H17ix3.4107
O4···C33.362 (4)C6···H16ix2.9100
O4···C183.105 (4)C7···H16ix3.2069
O5···O63.160 (4)C7···H17v3.5114
O5···C103.091 (4)C8···H13viii2.9953
O5···C113.234 (4)C8···H16ix3.3813
O5···C183.353 (4)C9···H13viii3.1884
O6···C103.124 (4)C9···H16ix3.2067
O6···C143.271 (4)C9···H17ix3.2533
C2···C33.294 (5)C10···H6vii3.2903
C2···C53.293 (6)C11···H2Bvii3.4072
C2···C63.285 (6)C11···H6vii2.9657
C3···C103.553 (4)C11···H19x3.4790
C3···C183.204 (4)C12···H2Bvii3.5370
C3···C193.188 (5)C12···H6vii3.3854
C4···C143.356 (4)C12···H19x3.3869
C4···C153.355 (5)C13···H8iv3.3152
C4···C183.326 (4)C13···H9iv3.1123
C4···C193.398 (5)C13···H17v3.3987
C8···C143.597 (5)C14···H20vi3.1976
C11···C143.255 (4)C15···H20vi3.3925
O1···C8i3.324 (4)C15···H21viii3.3930
O1···C11i3.166 (5)C16···H2Cx3.4656
O1···C13ii3.518 (5)C16···H5xii3.5488
O2···C2iii3.574 (5)C16···H20vi3.2027
O2···C5iv3.479 (4)C16···H21viii3.1327
O2···C9iv3.394 (4)C17···H2Cx3.2303
O2···C12i3.405 (5)C17···H7vii3.1047
O2···C17v3.406 (4)C17···H20vi2.8803
O3···C13ii3.250 (5)C18···H21vi3.5115
O3···C21vi3.449 (4)C19···H7i3.4546
O4···C9iv3.335 (5)C19···H21vi3.4225
O5···C6vii3.395 (4)C20···H7i3.3946
O5···C7vii3.342 (4)C20···H15iv3.5936
O6···C20vi3.414 (4)C21···H15iv3.1450
C2···O2iii3.574 (5)C21···H16iv3.0711
C5···O2viii3.479 (4)H2A···C2xiii3.1828
C5···C16ix3.491 (5)H2A···C5xiii3.3681
C6···O5v3.395 (4)H2A···H2Axiii2.2378
C7···O5v3.342 (4)H2A···H2Bxiii3.5677
C8···O1x3.324 (4)H2A···H2Cxiii3.4984
C9···O2viii3.394 (4)H2A···H5xiii2.4410
C9···O4viii3.335 (5)H2A···H12v3.4606
C11···O1x3.166 (5)H2A···H12ii3.3393
C12···O2x3.405 (5)H2B···O2iii3.2721
C13···O1xi3.518 (5)H2B···C11v3.4072
C13···O3xi3.250 (5)H2B···C12v3.5370
C15···C21viii3.579 (4)H2B···H2Axiii3.5677
C16···C5xii3.491 (5)H2B···H2Biii3.2227
C16···C21viii3.543 (5)H2B···H2Ciii3.5712
C17···O2vii3.406 (4)H2B···H5xiii3.2452
C18···C21vi3.595 (4)H2B···H11v3.0188
C19···C21vi3.515 (5)H2B···H12v3.2762
C20···O6vi3.414 (4)H2C···O2iii3.0612
C20···C21vi3.557 (5)H2C···C5xiii3.3355
C21···O3vi3.449 (4)H2C···C16i3.4656
C21···C15iv3.579 (4)H2C···C17i3.2303
C21···C16iv3.543 (5)H2C···H2Axiii3.4984
C21···C18vi3.595 (4)H2C···H2Biii3.5712
C21···C19vi3.515 (5)H2C···H5xiii2.4602
C21···C20vi3.557 (5)H2C···H11i3.1246
Mo1···H2A3.4052H2C···H17i3.3020
Mo1···H2B3.3128H5···O2viii2.9591
Mo1···H153.5256H5···C2xiii2.8413
Mo1···H193.5603H5···C16ix3.5488
P1···H83.1866H5···H2Axiii2.4410
P1···H113.2156H5···H2Bxiii3.2452
P1···H153.1555H5···H2Cxiii2.4602
P1···H193.1787H5···H12ii2.9127
O1···H2A2.9305H5···H16ix3.1909
O1···H2B2.9517H5···H17ix3.3139
O1···H2C2.3698H6···O5v2.8696
O1···H192.8766H6···O6v3.4567
O2···H2B3.3917H6···C10v3.2903
O2···H192.9626H6···C11v2.9657
O3···H153.0736H6···C12v3.3854
O3···H193.2846H6···H11v3.0322
O4···H113.1144H6···H16ix3.1850
O4···H123.1337H7···O5v2.7503
O5···H112.9209H7···O6v3.2600
O5···H153.1445H7···C17v3.1047
O5···H163.1378H7···C19x3.4546
O6···H193.1475H7···C20x3.3946
O6···H203.1439H7···H17v2.9010
C1···H53.2622H7···H19x3.0750
C1···H63.5136H7···H20x2.9593
C1···H193.4091H8···O1x2.3768
C2···H53.0620H8···O3x3.5861
C2···H63.0642H8···C1x3.5639
C3···H2B3.0535H8···C13viii3.3152
C3···H63.5333H8···H13viii2.5503
C3···H73.5392H8···H19x3.5900
C3···H192.7741H9···O2viii2.7898
C4···H93.3890H9···O4viii2.5358
C4···H152.8933H9···C3viii3.5348
C4···H192.9982H9···C13viii3.1123
C5···H2A2.8007H9···H12ii3.5362
C5···H2B3.3893H9···H13viii2.9508
C5···H73.2477H9···H17ix3.0301
C5···H83.2364H11···O1x2.4000
C6···H2A3.0845H11···O2x3.4100
C6···H2B2.9686H11···C1x3.1494
C6···H83.2410H11···C2x3.5382
C6···H93.2593H11···H2Bvii3.0188
C7···H53.2448H11···H2Cx3.1246
C7···H93.2588H11···H6vii3.0322
C8···H53.2368H11···H19x3.4104
C8···H63.2403H12···O2x2.6951
C8···H153.2779H12···O3xi3.3742
C9···H63.2549H12···C4xi3.4063
C9···H73.2582H12···C5xi3.5118
C9···H153.0516H12···H2Avii3.4606
C10···H73.5430H12···H2Axi3.3393
C10···H83.3826H12···H2Bvii3.2762
C10···H123.1464H12···H5xi2.9127
C10···H133.1018H12···H9xi3.5362
C11···H83.3365H12···H19x3.2551
C11···H133.1033H13···O1xi2.7818
C13···H113.0967H13···O3xi2.5324
C14···H83.1651H13···C1xi3.2942
C14···H113.0477H13···C4xi3.0478
C14···H163.1411H13···C8iv2.9953
C14···H173.1002H13···C9iv3.1884
C15···H83.2035H13···H8iv2.5503
C15···H93.4305H13···H9iv2.9508
C15···H173.1200H13···H17v3.4406
C17···H153.1177H15···O4viii3.5809
C18···H203.1487H15···O6viii3.3749
C18···H213.1083H15···C20viii3.5936
C19···H213.1265H15···C21viii3.1450
C21···H193.1235H15···H21viii3.1980
H2A···H52.3253H16···O6viii3.0672
H2A···H62.9215H16···C5xii2.9065
H2B···H53.3341H16···C6xii2.9100
H2B···H62.5171H16···C7xii3.2069
H5···H62.5858H16···C8xii3.3813
H5···H92.5780H16···C9xii3.2067
H6···H72.5833H16···C21viii3.0711
H7···H82.5739H16···H5xii3.1909
H8···H92.5930H16···H6xii3.1850
H8···H113.0352H16···H21viii2.6784
H8···H153.0715H17···O2vii2.6622
H9···H152.6274H17···O4vii3.0622
H11···H122.5539H17···C3vii2.9114
H12···H132.4165H17···C5xii3.4107
H15···H162.5576H17···C7vii3.5114
H16···H172.4292H17···C9xii3.2533
H19···H202.5627H17···C13vii3.3987
H20···H212.4355H17···H2Cx3.3020
O1···H8i2.3768H17···H5xii3.3139
O1···H11i2.4000H17···H7vii2.9010
O1···H13ii2.7818H17···H9xii3.0301
O2···H2Biii3.2721H17···H13vii3.4406
O2···H2Ciii3.0612H17···H20vi3.1945
O2···H5iv2.9591H19···C11i3.4790
O2···H9iv2.7898H19···C12i3.3869
O2···H11i3.4100H19···H7i3.0750
O2···H12i2.6951H19···H8i3.5900
O2···H17v2.6622H19···H11i3.4104
O3···H8i3.5861H19···H12i3.2551
O3···H12ii3.3742H19···H21vi3.5859
O3···H13ii2.5324H20···O3iv3.3953
O3···H20viii3.3953H20···O5vi2.8838
O3···H21vi2.5352H20···O6vi3.4695
O4···H9iv2.5358H20···C14vi3.1976
O4···H15iv3.5809H20···C15vi3.3925
O4···H17v3.0622H20···C16vi3.2027
O5···H6vii2.8696H20···C17vi2.8803
O5···H7vii2.7503H20···H7i2.9593
O5···H20vi2.8838H20···H17vi3.1945
O6···H6vii3.4567H21···O3vi2.5352
O6···H7vii3.2600H21···C4vi3.3179
O6···H15iv3.3749H21···C15iv3.3930
O6···H16iv3.0672H21···C16iv3.1327
O6···H20vi3.4695H21···C18vi3.5115
C1···H8i3.5639H21···C19vi3.4225
C1···H11i3.1494H21···H15iv3.1980
C1···H13ii3.2942H21···H16iv2.6784
C2···H2Axiii3.1828H21···H19vi3.5859
P1—Mo1—C1128.21 (9)C7—C8—C9108.7 (3)
P1—Mo1—C379.89 (8)Mo1—C9—C571.1 (2)
P1—Mo1—C478.48 (8)Mo1—C9—C872.30 (19)
P1—Mo1—C5141.13 (8)C5—C9—C8107.1 (3)
P1—Mo1—C6133.02 (8)P1—C10—O4115.9 (2)
P1—Mo1—C798.20 (8)P1—C10—C11134.6 (3)
P1—Mo1—C885.10 (8)O4—C10—C11109.1 (3)
P1—Mo1—C9107.65 (8)C10—C11—C12107.5 (3)
C1—Mo1—C369.24 (11)C11—C12—C13106.1 (3)
C1—Mo1—C472.24 (12)O4—C13—C12111.0 (4)
C1—Mo1—C588.91 (12)P1—C14—O5119.6 (2)
C1—Mo1—C693.91 (12)P1—C14—C15130.7 (3)
C1—Mo1—C7126.97 (12)O5—C14—C15109.7 (3)
C1—Mo1—C8146.42 (12)C14—C15—C16106.7 (3)
C1—Mo1—C9116.88 (11)C15—C16—C17106.4 (3)
C3—Mo1—C4106.58 (12)O5—C17—C16111.4 (3)
C3—Mo1—C5130.94 (11)P1—C18—O6117.9 (2)
C3—Mo1—C6100.79 (12)P1—C18—C19132.5 (3)
C3—Mo1—C7100.46 (11)O6—C18—C19109.6 (3)
C3—Mo1—C8129.25 (10)C18—C19—C20106.9 (3)
C3—Mo1—C9157.46 (11)C19—C20—C21106.3 (3)
C4—Mo1—C5107.42 (11)O6—C21—C20111.3 (3)
C4—Mo1—C6141.87 (11)C1—C2—H2A109.475
C4—Mo1—C7151.60 (13)C1—C2—H2B109.476
C4—Mo1—C8117.41 (12)C1—C2—H2C109.471
C4—Mo1—C995.82 (12)H2A—C2—H2B109.480
C5—Mo1—C635.35 (11)H2A—C2—H2C109.467
C5—Mo1—C758.13 (11)H2B—C2—H2C109.459
C5—Mo1—C857.63 (11)Mo1—C5—H5125.465
C5—Mo1—C934.61 (11)C6—C5—H5125.462
C6—Mo1—C734.99 (11)C9—C5—H5125.463
C6—Mo1—C857.89 (11)Mo1—C6—H6125.921
C6—Mo1—C958.25 (11)C5—C6—H6125.931
C7—Mo1—C834.57 (11)C7—C6—H6125.919
C7—Mo1—C957.92 (11)Mo1—C7—H7125.887
C8—Mo1—C934.73 (10)C6—C7—H7125.888
Mo1—P1—C10116.72 (10)C8—C7—H7125.885
Mo1—P1—C14114.92 (10)Mo1—C8—H8125.541
Mo1—P1—C18114.96 (9)C7—C8—H8125.535
C10—P1—C14100.70 (13)C9—C8—H8125.540
C10—P1—C18102.09 (13)Mo1—C9—H9126.321
C14—P1—C18105.58 (13)C5—C9—H9126.319
C10—O4—C13106.3 (3)C8—C9—H9126.314
C14—O5—C17105.8 (3)C10—C11—H11126.232
C18—O6—C21105.9 (3)C12—C11—H11126.226
Mo1—C1—O1124.6 (3)C11—C12—H12126.961
Mo1—C1—C2118.5 (3)C13—C12—H12126.951
O1—C1—C2116.8 (3)O4—C13—H13124.493
Mo1—C3—O2175.7 (3)C12—C13—H13124.484
Mo1—C4—O3177.1 (3)C14—C15—H15126.643
Mo1—C5—C671.96 (19)C16—C15—H15126.650
Mo1—C5—C974.30 (19)C15—C16—H16126.781
C6—C5—C9108.7 (3)C17—C16—H16126.780
Mo1—C6—C572.69 (18)O5—C17—H17124.313
Mo1—C6—C773.56 (19)C16—C17—H17124.310
C5—C6—C7107.6 (3)C18—C19—H19126.546
Mo1—C7—C671.45 (18)C20—C19—H19126.540
Mo1—C7—C873.29 (18)C19—C20—H20126.865
C6—C7—C8107.9 (3)C21—C20—H20126.858
Mo1—C8—C772.14 (19)O6—C21—H21124.340
Mo1—C8—C972.97 (19)C20—C21—H21124.322
P1—Mo1—C1—O121.0 (3)C8—Mo1—C5—C678.82 (14)
P1—Mo1—C1—C2155.15 (13)C8—Mo1—C5—C937.38 (11)
C1—Mo1—P1—C10123.99 (11)C5—Mo1—C9—C50.00 (12)
C1—Mo1—P1—C14118.42 (11)C5—Mo1—C9—C8115.8 (2)
C1—Mo1—P1—C184.46 (11)C9—Mo1—C5—C6116.2 (2)
C3—Mo1—P1—C1070.77 (9)C9—Mo1—C5—C90.00 (12)
C3—Mo1—P1—C14171.65 (8)C6—Mo1—C7—C60.00 (15)
C3—Mo1—P1—C1848.76 (8)C6—Mo1—C7—C8116.1 (3)
C4—Mo1—P1—C10179.83 (10)C7—Mo1—C6—C5115.0 (3)
C4—Mo1—P1—C1462.25 (10)C7—Mo1—C6—C70.00 (15)
C4—Mo1—P1—C1860.64 (10)C6—Mo1—C8—C737.45 (12)
P1—Mo1—C5—C697.48 (14)C6—Mo1—C8—C979.32 (14)
P1—Mo1—C5—C918.72 (19)C8—Mo1—C6—C577.99 (15)
C5—Mo1—P1—C1076.30 (12)C8—Mo1—C6—C736.99 (12)
C5—Mo1—P1—C1441.29 (12)C6—Mo1—C9—C537.63 (11)
C5—Mo1—P1—C18164.17 (11)C6—Mo1—C9—C878.21 (13)
P1—Mo1—C6—C5121.66 (9)C9—Mo1—C6—C536.82 (12)
P1—Mo1—C6—C76.7 (2)C9—Mo1—C6—C778.17 (15)
C6—Mo1—P1—C1024.61 (13)C7—Mo1—C8—C70.00 (14)
C6—Mo1—P1—C1492.97 (12)C7—Mo1—C8—C9116.8 (3)
C6—Mo1—P1—C18144.14 (12)C8—Mo1—C7—C6116.1 (3)
P1—Mo1—C7—C6175.07 (11)C8—Mo1—C7—C80.00 (13)
P1—Mo1—C7—C868.84 (12)C7—Mo1—C9—C579.11 (14)
C7—Mo1—P1—C1028.47 (10)C7—Mo1—C9—C836.73 (12)
C7—Mo1—P1—C1489.11 (9)C9—Mo1—C7—C679.19 (15)
C7—Mo1—P1—C18148.00 (9)C9—Mo1—C7—C836.89 (12)
P1—Mo1—C8—C7112.11 (11)C8—Mo1—C9—C5115.8 (3)
P1—Mo1—C8—C9131.13 (12)C8—Mo1—C9—C80.00 (14)
C8—Mo1—P1—C1060.56 (8)C9—Mo1—C8—C7116.8 (3)
C8—Mo1—P1—C1457.03 (8)C9—Mo1—C8—C90.00 (13)
C8—Mo1—P1—C18179.91 (8)Mo1—P1—C10—O474.1 (2)
P1—Mo1—C9—C5167.80 (8)Mo1—P1—C10—C1196.6 (3)
P1—Mo1—C9—C851.96 (12)Mo1—P1—C14—O5171.31 (15)
C9—Mo1—P1—C1087.32 (8)Mo1—P1—C14—C159.8 (3)
C9—Mo1—P1—C1430.26 (8)Mo1—P1—C18—O6176.72 (13)
C9—Mo1—P1—C18153.15 (8)Mo1—P1—C18—C192.5 (3)
C3—Mo1—C1—O178.4 (3)C10—P1—C14—O545.0 (3)
C3—Mo1—C1—C297.7 (2)C10—P1—C14—C15136.2 (3)
C4—Mo1—C1—O137.8 (3)C14—P1—C10—O4160.81 (19)
C4—Mo1—C1—C2146.1 (3)C14—P1—C10—C1128.5 (3)
C1—Mo1—C5—C698.33 (14)C10—P1—C18—O649.4 (2)
C1—Mo1—C5—C9145.47 (13)C10—P1—C18—C19129.9 (3)
C5—Mo1—C1—O1146.5 (3)C18—P1—C10—O452.1 (3)
C5—Mo1—C1—C237.42 (19)C18—P1—C10—C11137.2 (3)
C1—Mo1—C6—C582.56 (14)C14—P1—C18—O655.5 (2)
C1—Mo1—C6—C7162.46 (14)C14—P1—C18—C19125.2 (3)
C6—Mo1—C1—O1178.5 (3)C18—P1—C14—O560.9 (2)
C6—Mo1—C1—C22.4 (2)C18—P1—C14—C15117.9 (3)
C1—Mo1—C7—C622.1 (2)C10—O4—C13—C120.9 (5)
C1—Mo1—C7—C8138.20 (13)C13—O4—C10—P1174.4 (3)
C7—Mo1—C1—O1166.0 (2)C13—O4—C10—C111.4 (4)
C7—Mo1—C1—C210.1 (3)C14—O5—C17—C160.1 (3)
C1—Mo1—C8—C774.4 (3)C17—O5—C14—P1178.9 (2)
C1—Mo1—C8—C942.4 (3)C17—O5—C14—C150.2 (3)
C8—Mo1—C1—O1150.83 (19)C18—O6—C21—C200.3 (3)
C8—Mo1—C1—C233.1 (3)C21—O6—C18—P1179.48 (19)
C1—Mo1—C9—C539.45 (16)C21—O6—C18—C190.1 (3)
C1—Mo1—C9—C8155.29 (12)Mo1—C5—C6—Mo10.0
C9—Mo1—C1—O1125.3 (3)Mo1—C5—C6—C765.80 (19)
C9—Mo1—C1—C258.6 (2)Mo1—C5—C9—Mo10.0
C3—Mo1—C5—C637.40 (19)Mo1—C5—C9—C863.79 (19)
C3—Mo1—C5—C9153.60 (11)C6—C5—C9—Mo164.2 (3)
C3—Mo1—C6—C5152.15 (13)C6—C5—C9—C80.4 (4)
C3—Mo1—C6—C792.86 (14)C9—C5—C6—Mo165.8 (3)
C3—Mo1—C7—C693.92 (14)C9—C5—C6—C70.0 (4)
C3—Mo1—C7—C8150.00 (13)Mo1—C6—C7—Mo10.0
C3—Mo1—C8—C739.42 (19)Mo1—C6—C7—C864.70 (19)
C3—Mo1—C8—C9156.19 (12)C5—C6—C7—Mo165.2 (3)
C3—Mo1—C9—C561.2 (3)C5—C6—C7—C80.5 (4)
C3—Mo1—C9—C854.6 (4)Mo1—C7—C8—Mo10.0
C4—Mo1—C5—C6169.32 (13)Mo1—C7—C8—C964.30 (19)
C4—Mo1—C5—C974.48 (14)C6—C7—C8—Mo163.5 (3)
C4—Mo1—C6—C516.6 (3)C6—C7—C8—C90.8 (4)
C4—Mo1—C6—C7131.62 (17)Mo1—C8—C9—Mo10.0
C4—Mo1—C7—C6104.0 (3)Mo1—C8—C9—C562.99 (19)
C4—Mo1—C7—C812.1 (3)C7—C8—C9—Mo163.8 (3)
C4—Mo1—C8—C7173.56 (11)C7—C8—C9—C50.8 (4)
C4—Mo1—C8—C956.80 (17)P1—C10—C11—C12172.5 (3)
C4—Mo1—C9—C5112.47 (13)O4—C10—C11—C121.4 (4)
C4—Mo1—C9—C8131.70 (13)C10—C11—C12—C130.8 (4)
C5—Mo1—C6—C50.00 (14)C11—C12—C13—O40.0 (5)
C5—Mo1—C6—C7115.0 (3)P1—C14—C15—C16178.7 (2)
C6—Mo1—C5—C60.00 (14)O5—C14—C15—C160.2 (3)
C6—Mo1—C5—C9116.2 (3)C14—C15—C16—C170.1 (4)
C5—Mo1—C7—C638.14 (13)C15—C16—C17—O50.0 (4)
C5—Mo1—C7—C877.95 (15)P1—C18—C19—C20179.13 (19)
C7—Mo1—C5—C637.74 (12)O6—C18—C19—C200.1 (3)
C7—Mo1—C5—C978.46 (14)C18—C19—C20—C210.3 (4)
C5—Mo1—C8—C779.52 (14)C19—C20—C21—O60.4 (4)
C5—Mo1—C8—C937.25 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y+1/2, z+1/2; (viii) x1, y, z; (ix) x, y1/2, z+1/2; (x) x, y+1/2, z+1/2; (xi) x+1, y+1/2, z+1/2; (xii) x, y+1/2, z+1/2; (xiii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1x1.002.383.324 (4)158
C11—H11···O1x0.952.403.166 (5)137
Symmetry code: (x) x, y+1/2, z+1/2.
Selected bond lengths (Å) top
Mo1—P12.4189 (8)Mo1—C72.359 (3)
Mo1—C12.253 (4)Mo1—C82.374 (4)
Mo1—C31.968 (3)Mo1—C92.382 (4)
Mo1—C41.982 (3)O1—C11.227 (4)
Mo1—C52.341 (4)O2—C31.150 (4)
Mo1—C62.332 (4)O3—C41.148 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i1.002.3773.324 (4)157.7
C11—H11···O1i0.952.4003.166 (5)137.4
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge St. Catherine University and NSF–MRI award #1125975 "MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility". Additional funding was provided by a grant to Carleton College from the Howard Hughes Medical Institute and from the Department of Chemistry at Carleton College.

References

First citationAdams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589–3598.  CSD CrossRef Web of Science Google Scholar
First citationAdams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (2000). J. Chem. Soc. Dalton Trans. pp. 3074–3081.  Web of Science CSD CrossRef Google Scholar
First citationBarnett, K. W., Pollman, T. G. & Solomon, T. W. (1972). J. Organomet. Chem. 36, C23–C26.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChurchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953–959.  CSD CrossRef CAS Web of Science Google Scholar
First citationGladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.  CrossRef CAS Web of Science Google Scholar
First citationMichelini-Rodriguez, I., Romero, A. L., Kapoor, R. N., Cervanres-Lee, F. & Pannell, K. H. (1993). Organometallics, 12, 1221–1224.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m475-m476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds