

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Acetyldicarbonyl(n^5 -cyclopentadienyl)[tris(furan-2-yl)phosphane- κP]molybdenum(II)

Matthew T. Whited,^a* Julia G. Bakker-Arkema,^a Julia E. Greenwald,^a Lucas A. Morrill^a and Daron E. Janzen^b

^aDepartment of Chemistry, Carleton College, 1 N. College St, Northfield, MN 55057, USA, and ^bDepartment of Chemistry, St Catherine University, 2004 Randolph Ave., St Paul, MN 55105, USA

Correspondence e-mail: mwhited@carleton.edu

Received 4 July 2013; accepted 24 July 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.075; data-to-parameter ratio = 17.3.

The title compound, $[Mo(C_5H_5)(C_2H_3O)(C_{12}H_9O_3P)(CO)_2]$, was prepared by reaction of $[Mo(C_5H_5)(CO)_3(CH_3)]$ with tris(furan-2-vl)phosphane. The Mo^{II} atom exhibits a fourlegged piano-stool coordination geometry with the acetyl and phosphine ligands trans to each other. The O atom of the acetyl ligand points down, away from the Cp ring. In the crystal, molecules form centrosymmetrical dimers via $\pi - \pi$ interactions between furyl rings [the centroid-centroid distance is 3.396 (4) Å]. The dimers are linked by $C-H \cdots O$ hydrogen bonds into layers parallel to (100).

Related literature

For synthetic details for a related complex, see: Gladysz et al. (1979). For related structures, see: Churchill & Fennessey (1968); Barnett et al. (1972); Michelini-Rodriguez et al. (1993); Adams et al. (1997, 2000); Whited et al. (2012).

 $0.17 \times 0.15 \text{ mm}$

16222 measured reflections

 $R_{\rm int} = 0.044$

4539 independent reflections

3799 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$O_3P)(CO)_2]$ $V = 1988.4 (9) Å^3$ $M_r = 492.28$ $Z = 4$ Monoclinic, $P2_1/c$ Mo K α radiation $a = 8.050 (2) Å$ $\mu = 0.78 \text{ mm}^{-1}$ $b = 15.762 (4) Å$ $T = 173 \text{ K}$ $c = 16.073 (4) Å$ $0.24 \times 0.17 \times 0.1$	$[Mo(C_5H_5)(C_2H_3O)(C_{12}H_9-$	$\beta = 102.852 \ (8)^{\circ}$
$M_r = 492.28$ $Z = 4$ Monoclinic, $P2_1/c$ Mo K α radiation $a = 8.050$ (2) Å $\mu = 0.78 \text{ mm}^{-1}$ $b = 15.762$ (4) Å $T = 173 \text{ K}$ $c = 16.073$ (4) Å $0.24 \times 0.17 \times 0.1$	$O_3P)(CO)_2]$	$V = 1988.4 (9) \text{ Å}^3$
Monoclinic, $P2_1/c$ Mo Kα radiation $a = 8.050$ (2) Å $\mu = 0.78 \text{ mm}^{-1}$ $b = 15.762$ (4) Å $T = 173 \text{ K}$ $c = 16.073$ (4) Å $0.24 \times 0.17 \times 0.1$	$M_r = 492.28$	Z = 4
$a = 8.050$ (2) Å $\mu = 0.78 \text{ mm}^{-1}$ $b = 15.762$ (4) Å $T = 173 \text{ K}$ $c = 16.073$ (4) Å $0.24 \times 0.17 \times 0.1$	Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
$b = 15.762 (4) \text{ Å} T = 173 \text{ K} c = 16.073 (4) \text{ Å} 0.24 \times 0.17 \times 0.1$	a = 8.050 (2) Å	$\mu = 0.78 \text{ mm}^{-1}$
$c = 16.073 (4) \text{ Å}$ $0.24 \times 0.17 \times 0.1$	b = 15.762 (4) Å	T = 173 K
	c = 16.073 (4) Å	$0.24 \times 0.17 \times 0.13$

Data collection

Rigaku XtaLAB mini diffractometer Absorption correction: multi-scan (REQAB; Rigaku, 1998) $T_{\min} = 0.709, T_{\max} = 0.890$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	263 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
4539 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Mo1-P1	2.4189 (8)	Mo1-C7	2.359 (3)
Mo1-C1	2.253 (4)	Mo1-C8	2.374 (4)
Mo1-C3	1.968 (3)	Mo1-C9	2.382 (4)
Mo1-C4	1.982 (3)	O1-C1	1.227 (4)
Mo1-C5	2.341 (4)	O2-C3	1.150 (4)
Mo1-C6	2.332 (4)	O3-C4	1.148 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8-H8\cdots O1^{i}$	1.00	2.38	3.324 (4) 3.166 (5)	158 137
	0.95	2.40	5.100 (5)	137

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku Americas and Rigaku, 2011); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku Americas and Rigaku, 2010); software used to prepare material for publication: Crystal-Structure.

The authors gratefully acknowledge St. Catherine University and NSF-MRI award #1125975 "MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Molecular Structure Facility". Additional funding was provided by a grant to Carleton College from the Howard Hughes Medical Institute and from the Department of Chemistry at Carleton College.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KQ2007).

References

- Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589–3598.
- Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (2000). J. Chem. Soc. Dalton Trans. pp. 3074–3081.
- Barnett, K. W., Pollman, T. G. & Solomon, T. W. (1972). J. Organomet. Chem. 36, C23–C26.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.

- Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). *Inorg. Chem.* 18, 553–558.
- Michelini-Rodriguez, I., Romero, A. L., Kapoor, R. N., Cervanres-Lee, F. & Pannell, K. H. (1993). Organometallics, 12, 1221–1224.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku Americas and Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Rigaku Americas and Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159.

supporting information

Acta Cryst. (2013). E69, m475-m476 [doi:10.1107/S160053681302059X]

trans-Acetyldicarbonyl(η^5 -cyclopentadienyl)[tris(furan-2-yl)phosphane- κP]molybdenum(II)

Matthew T. Whited, Julia G. Bakker-Arkema, Julia E. Greenwald, Lucas A. Morrill and Daron E. Janzen

S1. Comment

Synthesis of the title complex, $[Mo(C_5H_5)(C_2H_3O)(CO)_2(C_{12}H_{12}O_3P)]$ (I), has not previously been reported, though several analogues containing various phosphine ligands have been reported and their reactivity studied (Adams *et al.*, 1997; Barnett *et al.*, 1972). The most closely related complexes, for which structural information is available, contain a triphenylphosphine or methyldiphenylphosphine ligand (Churchill & Fennessey, 1968; Whited *et al.*, 2012).

The molecular structure of **I** consists of a Mo(II) atom coordinated to a cyclopentadienyl ring in an η^5 fashion, two CO ligands, one tris(furan-2-yl)phosphane ligand, and one acetyl ligand (Fig. 1, Table 1). The orientation of the CO ligands can be described as *trans* (Fig. 2). The Mo—Cp centroid distance is 2.029 (2) Å.

In the crystal, the molecules of I form centrosymmetrical dimers *via* the π -- π interactions between furyl rings (the centroid-to-centroid distance is 3.396 (4) Å, Fig. 3).

There are several particularly short intermolecular distances involving H atoms. One short contact (2.38 Å) is present between O1 of the acetyl carbonyl on one Mo complex and H8 of a Cp ring on another (Table 2). Another short contact (2.40 Å) involves O1 of the acetyl group of one Mo complex and H11 of a furyl group on another (Table 2). These contacts between the acetyl carbonyl and hydrogen atoms may contribute to the unusual geometry adopted by the acetyl ligand, where the carbonyl points down, away from the Cp ring. In related structures reported by this laboratory (Whited *et al.*, 2012) and others (Churchill & Fennessey, 1968; Michelini-Rodriguez *et al.*, 1993; Adams *et al.*, 1997, 2000), the carbonyl points up toward the Cp ring. These hydrogen-bonding interactions lead to the formation of layers parallel to (100), as shown in Fig. 4.

S2. Experimental

CpMo(CO)₃(**CH**₃). This compound was prepared by a modification of the method used by Gladysz *et al.* (1979), as previously reported by Whited *et al.* (2012).

CpMo(CO)₂(P(2-Fur)₃)(COCH₃) (I). In an inert-atmosphere glove box, CpMo(CO)₃(CH₃) (30.6 mg, 0.118 mmol) was dissolved in 2 ml acetonitrile. In a separate vial, tris(furan-2-yl)phosphane (42.0 mg, 0.181 mmol) was dissolved in 2 ml acetonitrile. The vials were combined and the resulting solution was stirred for 1 week. Solvent was removed *in vacuo*, leaving an orange oil that was triturated with pentane (5 mL) and isolated by filtration to afford the desired product in pure form as a yellow powder (21.6 mg, 37.2%), as confirmed by IR and NMR (¹H, ¹³C, and ³¹P) spectral analyses. Crystalline material was obtained as yellow-orange prisms by vapor diffusion of pentane into a concentrated solution of **I** in diethyl ether at 233 K.

S3. Refinement

H-atoms were treated in calculated positions and refined in the riding model approximation with distances of C—H = 0.95, 1.00 and 0.98 Å for the furanyl, cyclopentadienyl and methyl groups, respectively, and with $U_{iso}(H) = k \times U_{eq}(C)$, k = 1.2 for furanyl and cyclopentadienyl groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation. The maximum and minimum electron densities in the final difference Fourier map are located 0.98 and 0.77 Å, respectively, from atom Mo1.

Eight low-angle reflections were rejected from the high-quality data set due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in this data set (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced into this routine structure determination.

Figure 1

Molecular structure of I (50% probability ellipsoids for non-H atoms). H atoms are presented as small spheres of arbitrary radius.

Figure 2

View of I perpendicular to Cp least-squares plane showing *trans* CO orientation.

Figure 3 The centrosymmetrical dimers of I.

Figure 4

Crystal packing of I along the b axis showing the layers parallel to (100). Dashed lines indicate the intermolecular C—H…O hydrogen bonds.

trans-Acetyldicarbonyl(η^5 -cyclopentadienyl)[tris(furan-2-yl)phosphane- κP]molybdenum(II)

Crystal data	
[Mo(C ₃ H ₃)(C ₂ H ₃ O)(C ₁₂ H ₉ O ₃ P)(CO) ₂] $M_r = 492.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.050 (2) Å b = 15.762 (4) Å c = 16.073 (4) Å $\beta = 102.852$ (8)° V = 1988.4 (9) Å ³ Z = 4	F(000) = 992.00 $D_x = 1.644 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 13392 reflections $\theta = 3.2-27.6^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 173 K Prism, orange $0.24 \times 0.17 \times 0.15 \text{ mm}$
Data collection Rigaku XtaLAB mini	4539 independent reflections 2700 \sim fluctions it $E^2 > 2$ (E^2)
diffractometer Detector resolution: 6.827 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998) $T_{min} = 0.709, T_{max} = 0.890$ 16222 measured reflections	3799 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.044$ $\theta_{max} = 27.5^{\circ}$ $h = -10 \rightarrow 9$ $k = -20 \rightarrow 20$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.075$ S = 1.06 4539 reflections 263 parameters 0 restraints	 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.025P)^2 + 1.9823P]$	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	V	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
Mol	0.28931 (3)	0.203772 (14)	0.114671 (14)	0.01996 (7)	
P1	0.43789 (8)	0.33427 (4)	0.16296 (4)	0.02053 (15)	
01	0.2805 (4)	0.17390 (16)	-0.07804 (14)	0.0472 (6)	
O2	0.6441 (3)	0.15779 (14)	0.07963 (13)	0.0357 (5)	
03	0.1064 (3)	0.33025 (14)	-0.02625 (14)	0.0419 (6)	
O4	0.7480 (3)	0.2905 (2)	0.25444 (14)	0.0615 (9)	
05	0.3794 (3)	0.49098 (13)	0.22768 (13)	0.0345 (5)	
O6	0.6466 (3)	0.45252 (13)	0.11535 (13)	0.0334 (5)	
C1	0.2624 (4)	0.1388 (2)	-0.01250 (19)	0.0338 (7)	
C2	0.2310 (7)	0.0460 (3)	-0.0174 (3)	0.0706 (14)	
C3	0.5144 (4)	0.17806 (17)	0.09207 (16)	0.0243 (6)	
C4	0.1775 (4)	0.28439 (17)	0.02493 (18)	0.0282 (7)	
C5	0.0773 (4)	0.11426 (19)	0.14393 (19)	0.0331 (7)	
C6	0.2380 (4)	0.08037 (19)	0.18492 (19)	0.0354 (7)	
C7	0.3150 (4)	0.1382 (2)	0.24888 (18)	0.0356 (7)	
C8	0.2035 (4)	0.2073 (2)	0.24670 (18)	0.0333 (7)	
С9	0.0548 (4)	0.19244 (19)	0.18202 (19)	0.0325 (7)	
C10	0.6004 (4)	0.32891 (18)	0.26045 (17)	0.0247 (6)	
C11	0.6050 (4)	0.3458 (2)	0.34274 (18)	0.0342 (7)	
C12	0.7657 (5)	0.3184 (3)	0.39118 (19)	0.0423 (9)	
C13	0.8462 (5)	0.2861 (4)	0.3364 (3)	0.0703 (15)	
C14	0.3049 (4)	0.41841 (17)	0.18893 (17)	0.0254 (6)	
C15	0.1340 (4)	0.4247 (2)	0.17555 (19)	0.0354 (7)	
C16	0.0987 (5)	0.5054 (2)	0.2072 (2)	0.0406 (8)	
C17	0.2480 (5)	0.5421 (2)	0.2373 (2)	0.0393 (8)	
C18	0.5519 (4)	0.38037 (17)	0.08986 (16)	0.0237 (6)	
C19	0.5672 (4)	0.35793 (19)	0.01093 (18)	0.0315 (7)	
C20	0.6773 (4)	0.4186 (2)	-0.0150 (2)	0.0374 (8)	
C21	0.7201 (4)	0.4734 (2)	0.0491 (2)	0.0392 (8)	
H2A	0.1192	0.0339	-0.0055	0.0847*	
H2B	0.3196	0.0170	0.0247	0.0847*	
H2C	0.2336	0.0256	-0.0747	0.0847*	
Н5	-0.0110	0.0843	0.1003	0.0397*	
H6	0.2812	0.0224	0.1758	0.0425*	
H7	0.4236	0.1288	0.2922	0.0427*	
H8	0.2210	0.2559	0.2877	0.0399*	
Н9	-0.0506	0.2280	0.1698	0.0390*	

supporting information

H11	0.5168	0.3715	0.3646	0.0410*	
H12	0.8064	0.3227	0.4512	0.0507*	
H13	0.9576	0.2626	0.3511	0.0844*	
H15	0.0529	0.3833	0.1500	0.0425*	
H16	-0.0105	0.5285	0.2068	0.0487*	
H17	0.2620	0.5969	0.2624	0.0471*	
H19	0.5147	0.3108	-0.0213	0.0378*	
H20	0.7128	0.4196	-0.0675	0.0449*	
H21	0.7925	0.5210	0.0490	0.0470*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Mol	0.01978 (12)	0.02049 (12)	0.01972 (11)	-0.00095 (9)	0.00462 (8)	-0.00145 (9)
P1	0.0182 (4)	0.0218 (4)	0.0205 (4)	0.0010 (3)	0.0019 (3)	-0.0024 (3)
01	0.0551 (16)	0.0590 (16)	0.0275 (12)	0.0048 (13)	0.0091 (11)	-0.0021 (11)
O2	0.0297 (12)	0.0416 (13)	0.0372 (12)	0.0077 (10)	0.0102 (10)	0.0013 (10)
O3	0.0439 (14)	0.0342 (12)	0.0386 (13)	-0.0032 (11)	-0.0101 (11)	0.0062 (10)
O4	0.0363 (14)	0.120 (3)	0.0239 (11)	0.0383 (15)	-0.0028 (10)	-0.0109 (13)
05	0.0311 (11)	0.0289 (11)	0.0408 (12)	0.0030 (9)	0.0017 (10)	-0.0134 (9)
06	0.0317 (12)	0.0309 (11)	0.0359 (12)	-0.0088 (9)	0.0038 (9)	-0.0006 (9)
C1	0.0271 (16)	0.0452 (19)	0.0288 (16)	-0.0002 (14)	0.0053 (13)	-0.0068 (14)
C2	0.108 (4)	0.050 (3)	0.065 (3)	-0.035 (3)	0.044 (3)	-0.029 (2)
C3	0.0289 (15)	0.0229 (14)	0.0211 (13)	-0.0022 (12)	0.0057 (11)	0.0016 (11)
C4	0.0254 (15)	0.0255 (15)	0.0310 (15)	-0.0065 (12)	0.0003 (12)	-0.0062 (12)
C5	0.0334 (17)	0.0321 (16)	0.0370 (16)	-0.0103 (13)	0.0148 (13)	-0.0029 (13)
C6	0.0445 (19)	0.0270 (16)	0.0406 (17)	0.0012 (14)	0.0218 (15)	0.0086 (13)
C7	0.0347 (17)	0.048 (2)	0.0257 (15)	0.0015 (15)	0.0112 (13)	0.0113 (14)
C8	0.0359 (17)	0.0427 (18)	0.0249 (14)	-0.0079 (15)	0.0147 (13)	-0.0057 (13)
C9	0.0267 (15)	0.0382 (17)	0.0363 (16)	-0.0044 (13)	0.0150 (13)	0.0002 (13)
C10	0.0189 (13)	0.0305 (15)	0.0243 (14)	0.0023 (11)	0.0039 (11)	-0.0020 (11)
C11	0.0296 (16)	0.0474 (19)	0.0258 (15)	0.0029 (14)	0.0068 (13)	-0.0042 (13)
C12	0.0366 (18)	0.064 (3)	0.0228 (15)	0.0043 (16)	-0.0011 (13)	0.0006 (15)
C13	0.039 (2)	0.138 (5)	0.0272 (17)	0.041 (3)	-0.0083 (16)	-0.006 (3)
C14	0.0267 (15)	0.0216 (14)	0.0265 (14)	0.0027 (12)	0.0028 (11)	-0.0060 (11)
C15	0.0245 (15)	0.0375 (18)	0.0432 (18)	0.0015 (14)	0.0052 (13)	-0.0118 (14)
C16	0.0329 (17)	0.047 (2)	0.0402 (18)	0.0157 (15)	0.0039 (14)	-0.0132 (15)
C17	0.047 (2)	0.0330 (17)	0.0368 (17)	0.0138 (15)	0.0060 (15)	-0.0141 (14)
C18	0.0226 (14)	0.0218 (13)	0.0249 (13)	-0.0017 (11)	0.0012 (11)	0.0012 (11)
C19	0.0364 (17)	0.0312 (16)	0.0269 (15)	0.0001 (14)	0.0069 (13)	0.0021 (12)
C20	0.0359 (17)	0.0452 (19)	0.0335 (16)	0.0007 (15)	0.0124 (14)	0.0131 (15)
C21	0.0298 (17)	0.0414 (19)	0.0445 (19)	-0.0075 (15)	0.0045 (14)	0.0147 (15)

Geometric parameters (Å, °)

Mo1—P1	2.4189 (8)	C10-C11	1.342 (4)
Mo1—C1	2.253 (4)	C11—C12	1.421 (5)
Mo1—C3	1.968 (3)	C12—C13	1.307 (6)

Mo1—C4	1.982 (3)	C14—C15	1.348 (5)
Mo1—C5	2.341 (4)	C15—C16	1.422 (5)
Mo1—C6	2.332 (4)	C16—C17	1.325 (5)
Mo1—C7	2.359 (3)	C18—C19	1.349 (4)
Mo1—C8	2.374 (4)	C19—C20	1.427 (5)
Mo1—C9	2.382 (4)	C20—C21	1.330 (5)
P1—C10	1.806 (3)	C2—H2A	0.980
P1-C14	1.810 (3)	C2—H2B	0.980
P1—C18	1.797 (3)	C2—H2C	0.980
01-C1	1 227 (4)	C5—H5	1 000
$0^2 - C^3$	1.227(1) 1.150(4)	С6—Н6	1.000
03-C4	1.130(4) 1.148(4)	C7H7	1.000
$O_4 C_{10}$	1.140(4)	C8 H8	1.000
04 - C13	1.330(4)		1.000
05 C14	1.375(4)	C11 U11	0.050
05 017	1.375(4)		0.950
05-017	1.303 (4)		0.930
06-01	1.380 (4)	С13—Н13	0.950
06-021	1.368 (5)	С15—Н15	0.950
C1—C2	1.484 (6)	C16—H16	0.950
C5—C6	1.419 (5)	C17—H17	0.950
C5—C9	1.406 (5)	C19—H19	0.950
C6—C7	1.410 (5)	C20—H20	0.950
С7—С8	1.406 (5)	C21—H21	0.950
C8—C9	1.420 (4)		
P1…O3	3.573 (3)	C2···H5 ^{xiii}	2.8413
01…02	3.428 (3)	C2…H11 ⁱ	3.5382
O1…O3	3.041 (4)	C3····H9 ^{iv}	3.5348
O1…C3	2.956 (4)	C3…H17 ^v	2.9114
O1···C4	2.659 (4)	C4…H12 ⁱⁱ	3.4063
O2…O4	3.453 (4)	C4…H13 ⁱⁱ	3.0478
O2…C1	3.114 (4)	C4···H21 ^{vi}	3.3179
O2…C18	3.597 (4)	C5…H2A ^{xiii}	3.3681
O2…C19	3.354 (4)	C5…H2C ^{xiii}	3.3355
O3…C1	3.258 (4)	С5…Н12 ^{іі}	3.5118
O3…C15	3.531 (4)	C5…H16 ^{ix}	2.9065
O4…O6	3.373 (4)	C5…H17 ^{ix}	3.4107
04…C3	3.362 (4)	C6…H16 ^{ix}	2.9100
04…C18	3 105 (4)	C7H16 ^{ix}	3 2069
0506	3 160 (4)	$C7 \cdots H17^{v}$	3 5114
05	3 091 (4)		2 9953
05···C11	3.091(4)	C8···H16 ^{ix}	3 3813
05	3 353 (A)		3 1884
O5 C10	2 124 (A)	C9	3.1004
06014	3.124(4)		2.2007
C_{14}	3.2/1(4)		5.2555 2.2002
	5.294 (5) 2.202 (C)		3.2903 2.4070
	3.293 (6)		3.40/2
C2…C6	3.285 (6)		2.9657

C3…C10	3.553 (4)	C11…H19 ^x	3.4790
C3…C18	3.204 (4)	C12···H2B ^{vii}	3.5370
C3…C19	3.188 (5)	C12···H6 ^{vii}	3.3854
C4…C14	3.356 (4)	C12…H19 ^x	3.3869
C4…C15	3.355 (5)	C13…H8 ^{iv}	3.3152
C4…C18	3.326 (4)	C13…H9 ^{iv}	3.1123
C4…C19	3.398 (5)	C13…H17 ^v	3.3987
C8…C14	3.597 (5)	C14…H20 ^{vi}	3.1976
C11…C14	3.255 (4)	C15…H20 ^{vi}	3.3925
O1…C8 ⁱ	3.324 (4)	C15····H21 ^{viii}	3.3930
O1…C11 ⁱ	3.166 (5)	C16···H2C ^x	3.4656
O1…C13 ⁱⁱ	3.518 (5)	C16····H5 ^{xii}	3.5488
O2···C2 ⁱⁱⁱ	3.574 (5)	C16…H20 ^{vi}	3.2027
O2···C5 ^{iv}	3.479 (4)	C16···H21 ^{viii}	3.1327
0209^{iv}	3 394 (4)	C17···H2C ^x	3 2303
02012^{i}	3 405 (5)	C17···H7 ^{vii}	3 1047
02° 012° 02° 012°	3 406 (4)	$C17 \cdots H20^{vi}$	2 8803
03013^{ii}	3 250 (5)	$C18 \cdots H21^{vi}$	3 5115
$03 \cdots C21^{v_i}$	3.230(3) 3.449(4)	C19H7 ⁱ	3 4546
O_{4} O_{iv}	3 335 (5)	$C10H21^{vi}$	3 1225
$05 \cdots C6^{\text{vii}}$	3.305 (1)	C_{19}^{i} H_{21}^{i}	3 3046
$05 \times 0^{\text{vii}}$	3.393(4)	$C_{20} = H_{1}^{iv}$	3 5036
	3.342(4)	C21H15iv	3.1450
	3.414(4)	C21H16iv	2 0711
	3.374(3)		2 1020
$C_5 = C_1 C_1 C_1 C_2$	5.4/9 (4) 2.401 (5)		3.1828
	3.491 (5)		3.3681
	3.395 (4)		2.2378
	3.342 (4)		3.56//
	3.324 (4)		3.4984
	3.394 (4)		2.4410
C904 ^{vm}	3.335 (5)	H2A···H12 ^v	3.4606
C11····O1×	3.166 (5)		3.3393
$C12\cdots O2^{x}$	3.405 (5)	H2B····O2 ^m	3.2721
$C13\cdots O1^{x_1}$	3.518 (5)	H2B···C11 ^v	3.4072
C13…O3 ^{xi}	3.250 (5)	H2B···C12 ^v	3.5370
C15···C21 ^{viii}	3.579 (4)	H2B…H2A ^{xiii}	3.5677
C16C5 ^{xii}	3.491 (5)	H2B···H2B ⁱⁱⁱ	3.2227
C16···C21 ^{viii}	3.543 (5)	H2B…H2C ⁱⁱⁱ	3.5712
C17····O2 ^{vii}	3.406 (4)	H2B····H5 ^{xiii}	3.2452
C18····C21 ^{vi}	3.595 (4)	H2B····H11 ^v	3.0188
C19…C21 ^{vi}	3.515 (5)	H2B····H12 ^v	3.2762
C20····O6 ^{vi}	3.414 (4)	H2C····O2 ⁱⁱⁱ	3.0612
C20…C21 ^{vi}	3.557 (5)	H2C····C5 ^{xiii}	3.3355
C21···O3 ^{vi}	3.449 (4)	H2C····C16 ⁱ	3.4656
$C21$ ··· $C15^{iv}$	3.579 (4)	H2C···C17 ⁱ	3.2303
C21C16 ^{iv}	3.543 (5)	H2C…H2A ^{xiii}	3.4984
C21···C18 ^{vi}	3.595 (4)	H2C···H2B ⁱⁱⁱ	3.5712
C21···C19 ^{vi}	3.515 (5)	H2C···H5 ^{xiii}	2.4602

C21C20 ^{vi}	3.557 (5)	H2C···H11 ⁱ	3.1246
Mo1…H2A	3.4052	H2C···H17 ⁱ	3.3020
Mo1…H2B	3.3128	H5…O2 ^{viii}	2.9591
Mo1…H15	3.5256	H5…C2 ^{xiii}	2.8413
Mo1…H19	3.5603	H5…C16 ^{ix}	3.5488
P1…H8	3.1866	H5…H2A ^{xiii}	2.4410
P1…H11	3.2156	H5…H2B ^{xiii}	3.2452
P1…H15	3.1555	H5…H2C ^{xiii}	2.4602
P1…H19	3.1787	H5…H12 ⁱⁱ	2.9127
01H2A	2 9305	H5…H16 ^{ix}	3 1909
01H2B	2 9517	H5…H17 ^{ix}	3 3139
01H2C	2 3698	$H6\cdots O5^{v}$	2.8696
01H19	2.8766	$H6O6^{v}$	3 4567
02···H2B	3 3917	$H6\cdots C10^{v}$	3 2903
02H19	2 9626	$H6\cdots C11^{v}$	2 9657
03H15	3 0736	$H6\cdots C12^{v}$	3 3854
O3H10	3 2846	H6H11 ^v	3 0322
04H11	3 1144	H6H16 ^{ix}	3 1850
04H12	3 1337	$H705^{v}$	2 7503
05	2 0200		2.7505
05	2.9209	H7C17 ^v	3.2000
05	2 1279	H7C10x	2 1516
O5H10	2 1475	H7C20×	2 2046
061120	2.1475	H7H17v	2 0010
C1 115	2.2(22		2.9010
	3.2622	H/H19 [*]	3.0750
	3.3130	$H/\cdots H20^{n}$	2.9595
	3.4091		2.3/68
C2H5	3.0620		3.5861
C2H6	3.0642		3.5639
C3···H2B	3.0535		3.3152
C3H6	3.5333		2.5503
С3…Н7	3.5392	H8H19x	3.5900
C3…H19	2.7741	H9O2 ^{vm}	2.7898
C4…H9	3.3890	H9····O4 ^{vm}	2.5358
C4…H15	2.8933	H9…C3 ^{vm}	3.5348
C4…H19	2.9982	H9…C13 ^{vm}	3.1123
C5···H2A	2.8007	H9…H12 ⁿ	3.5362
C5···H2B	3.3893	H9…H13 ^{viii}	2.9508
С5…Н7	3.2477	H9…H17 ^{ix}	3.0301
С5…Н8	3.2364	H11····O1 ^x	2.4000
C6…H2A	3.0845	H11O2 ^x	3.4100
C6···H2B	2.9686	H11···C1 ^x	3.1494
С6…Н8	3.2410	H11····C2 ^x	3.5382
С6…Н9	3.2593	H11····H2B ^{vii}	3.0188
С7…Н5	3.2448	H11···H2C ^x	3.1246
С7…Н9	3.2588	H11····H6 ^{vii}	3.0322
С8…Н5	3.2368	H11…H19 ^x	3.4104
С8…Н6	3.2403	H12…O2 ^x	2.6951

C8…H15	3.2779	H12…O3 ^{xi}	3.3742
С9…Н6	3.2549	H12····C4 ^{xi}	3.4063
С9…Н7	3.2582	H12····C5 ^{xi}	3.5118
С9…Н15	3.0516	H12····H2A ^{vii}	3.4606
С10…Н7	3.5430	H12····H2A ^{xi}	3.3393
С10…Н8	3.3826	H12····H2B ^{vii}	3.2762
C10…H12	3.1464	H12····H5 ^{xi}	2.9127
C10…H13	3.1018	H12…H9 ^{xi}	3.5362
С11…Н8	3.3365	H12…H19 ^x	3.2551
С11…Н13	3.1033	H13····O1 ^{xi}	2.7818
C13…H11	3.0967	H13…O3 ^{xi}	2.5324
С14…Н8	3.1651	H13····C1 ^{xi}	3.2942
C14…H11	3.0477	H13····C4 ^{xi}	3.0478
C14…H16	3.1411	H13…C8 ^{iv}	2.9953
C14…H17	3.1002	H13…C9 ^{iv}	3.1884
С15…Н8	3.2035	H13…H8 ^{iv}	2.5503
С15…Н9	3.4305	H13…H9 ^{iv}	2.9508
C15…H17	3.1200	H13…H17 ^v	3.4406
C17…H15	3.1177	H15…O4 ^{viii}	3.5809
C18…H20	3.1487	H15…O6 ^{viii}	3.3749
C18…H21	3.1083	H15…C20 ^{viii}	3.5936
C19…H21	3.1265	H15…C21 ^{viii}	3.1450
С21…Н19	3.1235	H15…H21 ^{viii}	3.1980
H2A…H5	2.3253	H16····O6 ^{viii}	3.0672
Н2А…Н6	2.9215	H16····C5 ^{xii}	2.9065
H2B…H5	3.3341	H16····C6 ^{xii}	2.9100
Н2В…Н6	2.5171	H16····C7 ^{xii}	3.2069
Н5…Н6	2.5858	H16····C8 ^{xii}	3.3813
Н5…Н9	2.5780	H16····C9 ^{xii}	3.2067
Н6…Н7	2.5833	H16…C21 ^{viii}	3.0711
H7…H8	2.5739	H16····H5 ^{xii}	3.1909
Н8…Н9	2.5930	H16…H6 ^{xii}	3.1850
H8…H11	3.0352	H16…H21 ^{viii}	2.6784
H8…H15	3.0715	H17····O2 ^{vii}	2.6622
H9…H15	2.6274	H17…O4 ^{vii}	3.0622
H11…H12	2.5539	H17····C3 ^{vii}	2.9114
H12…H13	2.4165	H17····C5 ^{xii}	3.4107
H15…H16	2.5576	H17····C7 ^{vii}	3.5114
H16…H17	2.4292	H17····C9 ^{xii}	3.2533
H19…H20	2.5627	H17····C13 ^{vii}	3.3987
H20…H21	2.4355	H17···H2C ^x	3.3020
O1…H8 ⁱ	2.3768	H17…H5 ^{xii}	3.3139
O1…H11 ⁱ	2.4000	H17…H7 ^{vii}	2.9010
01…H13 ⁱⁱ	2.7818	H17…H9 ^{xii}	3.0301
O2…H2B ⁱⁱⁱ	3.2721	H17…H13 ^{vii}	3.4406
O2…H2C ⁱⁱⁱ	3.0612	H17…H20 ^{vi}	3.1945
$O2 \cdots H5^{iv}$	2.9591	H19…C11 ⁱ	3.4790
O2…H9 ^{iv}	2.7898	H19…C12 ⁱ	3.3869

O2…H11i	3.4100	H19····H7 ⁱ	3.0750
$O2 \cdots H12^i$	2.6951	H19····H8 ⁱ	3.5900
O2…H17 ^v	2.6622	H19…H11 ⁱ	3.4104
O3…H8 ⁱ	3.5861	H19…H12 ⁱ	3.2551
O3…H12 ⁱⁱ	3.3742	H19····H21 ^{vi}	3.5859
O3…H13 ⁱⁱ	2.5324	H20…O3 ^{iv}	3.3953
O3…H20 ^{viii}	3.3953	H20····O5 ^{vi}	2.8838
O3…H21 ^{vi}	2.5352	H20····O6 ^{vi}	3.4695
O4…H9 ^{iv}	2.5358	H20····C14 ^{vi}	3.1976
O4…H15 ^{iv}	3.5809	H20…C15 ^{vi}	3.3925
O4…H17 ^v	3.0622	H20…C16 ^{vi}	3.2027
O5…H6 ^{vii}	2.8696	H20…C17 ^{vi}	2.8803
O5…H7 ^{vii}	2.7503	H20····H7 ⁱ	2.9593
O5…H20 ^{vi}	2.8838	H20…H17 ^{vi}	3.1945
O6…H6 ^{vii}	3.4567	H21···O3 ^{vi}	2.5352
O6…H7 ^{vii}	3.2600	H21····C4 ^{vi}	3.3179
O6…H15 ^{iv}	3.3749	H21…C15 ^{iv}	3.3930
O6…H16 ^{iv}	3.0672	H21…C16 ^{iv}	3.1327
O6…H20 ^{vi}	3.4695	H21····C18 ^{vi}	3.5115
C1…H8 ⁱ	3.5639	H21…C19 ^{vi}	3.4225
C1…H11 ⁱ	3.1494	H21…H15 ^{iv}	3.1980
C1…H13 ⁱⁱ	3.2942	H21…H16 ^{iv}	2.6784
C2…H2A ^{xiii}	3.1828	H21…H19 ^{vi}	3.5859
P1—Mo1—C1	128.21 (9)	C7—C8—C9	108.7 (3)
P1—Mo1—C3	79.89 (8)	Mo1—C9—C5	71.1 (2)
P1—Mo1—C4	78.48 (8)	Mo1-C9-C8	72.30 (19)
P1—Mo1—C5	141.13 (8)	C5—C9—C8	107.1 (3)
P1—Mo1—C6	133.02 (8)	P1	115.9 (2)
P1—Mo1—C7	98.20 (8)	P1C10C11	134.6 (3)
P1—Mo1—C8	85.10 (8)	O4—C10—C11	109.1 (3)
P1—Mo1—C9	107.65 (8)	C10—C11—C12	107.5 (3)
C1—Mo1—C3	69.24 (11)	C11—C12—C13	106.1 (3)
C1—Mo1—C4	72.24 (12)	O4—C13—C12	111.0 (4)
C1—Mo1—C5	88.91 (12)	P1—C14—O5	119.6 (2)
C1—Mo1—C6	93.91 (12)	P1—C14—C15	130.7 (3)
C1—Mo1—C7	126.97 (12)	O5—C14—C15	109.7 (3)
C1—Mo1—C8	146.42 (12)	C14—C15—C16	106.7 (3)
C1—Mo1—C9	116.88 (11)	C15—C16—C17	106.4 (3)
C3—Mo1—C4	106.58 (12)	O5—C17—C16	111.4 (3)
C3-Mo1-C5	130.94 (11)	P1	117.9 (2)
C3-Mo1-C6	100.79 (12)	P1-C18-C19	132.5(3)
C3-Mo1-C7	100.46 (11)	06-C18-C19	109.6 (3)
C3—Mo1—C8	129.25 (10)	C18-C19-C20	106.9 (3)
C3—Mo1—C9	157.46 (11)	C19-C20-C21	106 3 (3)
C4-Mo1-C5	107.42 (11)	06-C21-C20	111.3 (3)
C4-Mo1-C6	141 87 (11)	C1—C2—H2A	109 475
C4-Mo1-C7	151 60 (13)	C1 - C2 - H2B	109.476
	121.00(12)		107.770

C4—Mo1—C8	117.41 (12)	C1—C2—H2C	109.471
C4—Mo1—C9	95.82 (12)	H2A—C2—H2B	109.480
C5—Mo1—C6	35.35 (11)	H2A—C2—H2C	109.467
C5—Mo1—C7	58.13 (11)	H2B—C2—H2C	109.459
C5—Mo1—C8	57.63 (11)	Mo1—C5—H5	125.465
C5—Mo1—C9	34.61 (11)	С6—С5—Н5	125.462
C6—Mo1—C7	34.99 (11)	С9—С5—Н5	125.463
C6—Mo1—C8	57.89 (11)	Mo1—C6—H6	125.921
C6—Mo1—C9	58.25 (11)	С5—С6—Н6	125.931
C7—Mo1—C8	34.57 (11)	С7—С6—Н6	125.919
C7—Mo1—C9	57.92 (11)	Mo1—C7—H7	125.887
C8—Mo1—C9	34.73 (10)	С6—С7—Н7	125.888
Mo1—P1—C10	116.72 (10)	С8—С7—Н7	125.885
Mo1—P1—C14	114.92 (10)	Mo1—C8—H8	125.541
Mo1—P1—C18	114.96 (9)	С7—С8—Н8	125.535
C10—P1—C14	100.70 (13)	С9—С8—Н8	125.540
C10—P1—C18	102.09 (13)	Mo1—C9—H9	126.321
C14—P1—C18	105.58 (13)	С5—С9—Н9	126.319
C10—O4—C13	106.3 (3)	С8—С9—Н9	126.314
C14—O5—C17	105.8 (3)	C10—C11—H11	126.232
C18—O6—C21	105.9 (3)	C12—C11—H11	126.226
Mo1-C1-O1	124.6 (3)	C11—C12—H12	126.961
Mo1-C1-C2	118.5 (3)	C13—C12—H12	126.951
O1—C1—C2	116.8 (3)	O4—C13—H13	124.493
Mo1—C3—O2	175.7 (3)	C12—C13—H13	124.484
Mo1-C4-O3	177.1 (3)	C14—C15—H15	126.643
Mo1—C5—C6	71.96 (19)	C16—C15—H15	126.650
Mo1-C5-C9	74.30 (19)	C15—C16—H16	126.781
C6—C5—C9	108.7 (3)	C17—C16—H16	126.780
Mo1-C6-C5	72.69 (18)	O5—C17—H17	124.313
Mo1-C6-C7	73.56 (19)	C16—C17—H17	124.310
C5—C6—C7	107.6 (3)	C18—C19—H19	126.546
Mo1-C7-C6	71.45 (18)	С20—С19—Н19	126.540
Mo1—C7—C8	73.29 (18)	С19—С20—Н20	126.865
C6—C7—C8	107.9 (3)	C21—C20—H20	126.858
Mo1-C8-C7	72.14 (19)	O6—C21—H21	124.340
Mo1-C8-C9	72.97 (19)	C20—C21—H21	124.322
P1—Mo1—C1—O1	-21.0(3)	C8—Mo1—C5—C6	-78.82 (14)
P1—Mo1—C1—C2	155.15 (13)	C8—Mo1—C5—C9	37.38 (11)
C1—Mo1—P1—C10	-123.99 (11)	C5—Mo1—C9—C5	0.00 (12)
C1—Mo1—P1—C14	118.42 (11)	C5—Mo1—C9—C8	115.8 (2)
C1—Mo1—P1—C18	-4.46 (11)	C9—Mo1—C5—C6	-116.2(2)
C3—Mo1—P1—C10	-70.77 (9)	C9—Mo1—C5—C9	0.00 (12)
C3—Mo1—P1—C14	171.65 (8)	C6—Mo1—C7—C6	0.00 (15)
C3—Mo1—P1—C18	48.76 (8)	C6—Mo1—C7—C8	-116.1 (3)
C4—Mo1—P1—C10	179.83 (10)	C7—Mo1—C6—C5	115.0 (3)
C4-Mo1-P1-C14	62.25 (10)	C7-Mo1-C6-C7	0.00(15)
		e, moi eo e,	

~	60 64 (40)	<i></i>	
C4—Mo1—P1—C18	-60.64 (10)	C6—Mo1—C8—C7	37.45 (12)
P1—Mo1—C5—C6	-97.48 (14)	C6—Mo1—C8—C9	-79.32 (14)
P1—Mo1—C5—C9	18.72 (19)	C8—Mo1—C6—C5	77.99 (15)
C5—Mo1—P1—C10	76.30 (12)	C8—Mo1—C6—C7	-36.99 (12)
C5—Mo1—P1—C14	-41.29 (12)	C6—Mo1—C9—C5	-37.63 (11)
C5—Mo1—P1—C18	-164.17 (11)	C6—Mo1—C9—C8	78.21 (13)
P1—Mo1—C6—C5	121.66 (9)	C9—Mo1—C6—C5	36.82 (12)
P1-Mo1-C6-C7	6.7 (2)	C9—Mo1—C6—C7	-78.17 (15)
C6—Mo1—P1—C10	24.61 (13)	C7—Mo1—C8—C7	0.00 (14)
C6—Mo1—P1—C14	-92.97 (12)	C7—Mo1—C8—C9	-116.8 (3)
C6—Mo1—P1—C18	144.14 (12)	C8—Mo1—C7—C6	116.1 (3)
P1—Mo1—C7—C6	-175.07(11)	C8—Mo1—C7—C8	0.00 (13)
P1—Mo1—C7—C8	68.84 (12)	C7—Mo1—C9—C5	-79.11 (14)
C7-Mo1-P1-C10	28 47 (10)	C7-M01-C9-C8	36 73 (12)
C7-Mo1-P1-C14	-89 11 (9)	C9-Mo1-C7-C6	79 19 (15)
C7-Mo1-P1-C18	148 00 (9)	C9-Mo1-C7-C8	-36.89(12)
$\begin{array}{c} C_{1} \\ P_{1} \\ M_{0} \\ M_{0} \\ C_{1} \\ C_{2} \\ C_{1} \\$	-112 11 (11)	C_{8} Mol C_{9} C_{5}	-115.8(3)
$P_1 = M_{01} = C_8 = C_7$	112.11(11) 121.12(12)	C_{8}^{8} Mol C_{9}^{8} C_{9}^{8}	-0.00(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131.13(12)	$C_{0} = M_{01} = C_{0} = C_{0}$	-0.00(14)
$C_8 = M_0 I = P I = C I d$	00.30 (8) 57.02 (8)	C9 = M01 = C8 = C7	110.8(3)
C8-M01-P1-C14	-57.03(8)	C9—Mo1— $C8$ — $C9$	-0.00(13)
C8—Mo1—P1—C18	-1/9.91 (8)	Mo1—P1—C10—O4	/4.1 (2)
PI-MoI-C9-C5	-167.80 (8)	Mol—Pl—Cl0—Cll	-96.6 (3)
P1—Mo1—C9—C8	-51.96 (12)	Mo1—P1—C14—O5	171.31 (15)
C9—Mo1—P1—C10	87.32 (8)	Mo1—P1—C14—C15	-9.8 (3)
C9—Mo1—P1—C14	-30.26 (8)	Mo1—P1—C18—O6	-176.72 (13)
C9—Mo1—P1—C18	-153.15 (8)	Mo1—P1—C18—C19	2.5 (3)
C3—Mo1—C1—O1	-78.4 (3)	C10—P1—C14—O5	45.0 (3)
C3—Mo1—C1—C2	97.7 (2)	C10—P1—C14—C15	-136.2 (3)
C4—Mo1—C1—O1	37.8 (3)	C14—P1—C10—O4	-160.81 (19)
C4—Mo1—C1—C2	-146.1 (3)	C14—P1—C10—C11	28.5 (3)
C1—Mo1—C5—C6	98.33 (14)	C10—P1—C18—O6	-49.4 (2)
C1—Mo1—C5—C9	-145.47 (13)	C10—P1—C18—C19	129.9 (3)
C5—Mo1—C1—O1	146.5 (3)	C18—P1—C10—O4	-52.1 (3)
C5—Mo1—C1—C2	-37.42(19)	C18—P1—C10—C11	137.2 (3)
C1—Mo1—C6—C5	-82.56(14)	C14—P1—C18—O6	55.5 (2)
C1—Mo1—C6—C7	162.46 (14)	C14—P1—C18—C19	-125.2(3)
C6-M01-C1-O1	-1785(3)	C18 - P1 - C14 - O5	-60.9(2)
C6-Mo1-C1-C2	-24(2)	C18 - P1 - C14 - C15	1179(3)
C1 - Mo1 - C7 - C6	-221(2)	C10 - 04 - C13 - C12	0.9(5)
C1 Mol $C7$ $C8$	-13820(13)	C13 O4 C10 P1	-1744(3)
$C7 M_{01} C1 O1$	-166.0(2)	$C_{13} = 04 = C_{10} = 011$	-14(4)
C^{-} Mol $-C^{-}$ Ol	-100.0(2)	C13 - 04 - C10 - C11	-1.4(4)
$C_1 = M_0 = C_1 = C_2$	10.1(3)	C14 - 05 - C17 - C10	0.1(3)
$C_1 = M_0 I = C_0 = C_0$	/4.4 (3)	C1/05C14P1	1/8.9 (2)
$C_1 - MO_1 - C_2 - C_2$	-42.4(3)	C1/-05-C14-C15	-0.2(3)
C8-Mol-C1-Ol	150.83 (19)	C18 - C6 - C21 - C20	-0.3(3)
C8—Mo1—C1—C2	-33.1 (3)	C21—O6—C18—P1	179.48 (19)
C1—Mo1—C9—C5	39.45 (16)	C21—O6—C18—C19	0.1 (3)
C1—Mo1—C9—C8	155.29 (12)	Mo1-C5-C6-Mo1	0.0

C9-Mo1-C1-O1	125.3 (3)	Mo1-C5-C6-C7	65.80 (19)
C9—Mo1—C1—C2	-58.6 (2)	Mo1-C5-C9-Mo1	0.0
C3—Mo1—C5—C6	37.40 (19)	Mo1-C5-C9-C8	-63.79 (19)
C3—Mo1—C5—C9	153.60 (11)	C6C5Mo1	64.2 (3)
C3—Mo1—C6—C5	-152.15 (13)	C6—C5—C9—C8	0.4 (4)
C3—Mo1—C6—C7	92.86 (14)	C9-C5-C6-Mo1	-65.8 (3)
C3—Mo1—C7—C6	-93.92 (14)	C9—C5—C6—C7	0.0 (4)
C3—Mo1—C7—C8	150.00 (13)	Mo1-C6-C7-Mo1	0.0
C3—Mo1—C8—C7	-39.42 (19)	Mo1—C6—C7—C8	64.70 (19)
C3—Mo1—C8—C9	-156.19 (12)	C5-C6-C7-Mo1	-65.2 (3)
C3—Mo1—C9—C5	-61.2 (3)	C5—C6—C7—C8	-0.5 (4)
C3—Mo1—C9—C8	54.6 (4)	Mo1-C7-C8-Mo1	0.0
C4—Mo1—C5—C6	169.32 (13)	Mo1-C7-C8-C9	64.30 (19)
C4—Mo1—C5—C9	-74.48 (14)	C6-C7-C8-Mo1	-63.5 (3)
C4—Mo1—C6—C5	-16.6 (3)	C6—C7—C8—C9	0.8 (4)
C4—Mo1—C6—C7	-131.62 (17)	Mo1-C8-C9-Mo1	0.0
C4—Mo1—C7—C6	104.0 (3)	Mo1-C8-C9-C5	62.99 (19)
C4—Mo1—C7—C8	-12.1 (3)	C7-C8-C9-Mo1	-63.8 (3)
C4—Mo1—C8—C7	173.56 (11)	C7—C8—C9—C5	-0.8 (4)
C4—Mo1—C8—C9	56.80 (17)	P1-C10-C11-C12	172.5 (3)
C4—Mo1—C9—C5	112.47 (13)	O4-C10-C11-C12	1.4 (4)
C4—Mo1—C9—C8	-131.70 (13)	C10-C11-C12-C13	-0.8 (4)
C5—Mo1—C6—C5	0.00 (14)	C11—C12—C13—O4	-0.0 (5)
C5—Mo1—C6—C7	-115.0 (3)	P1-C14-C15-C16	-178.7 (2)
C6—Mo1—C5—C6	0.00 (14)	O5-C14-C15-C16	0.2 (3)
C6—Mo1—C5—C9	116.2 (3)	C14—C15—C16—C17	-0.1 (4)
C5—Mo1—C7—C6	38.14 (13)	C15—C16—C17—O5	-0.0 (4)
C5—Mo1—C7—C8	-77.95 (15)	P1-C18-C19-C20	-179.13 (19)
C7—Mo1—C5—C6	-37.74 (12)	O6—C18—C19—C20	0.1 (3)
C7—Mo1—C5—C9	78.46 (14)	C18—C19—C20—C21	-0.3 (4)
C5—Mo1—C8—C7	79.52 (14)	C19—C20—C21—O6	0.4 (4)
C5—Mo1—C8—C9	-37.25 (12)		

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x-1, -y+1/2, z-1/2; (iii) -x+1, -y, -z; (iv) x+1, y, z; (v) -x+1, y-1/2, -z+1/2; (vi) -x+1, -y+1, -z; (vii) -x+1, -y+1/2, -z+1/2; (viii) x-1, y, z; (ix) -x, y-1/2, -z+1/2; (x) x+1, -y+1/2, z+1/2; (xi) x+1, -y+1/2, -z+1/2; (xiii) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C8—H8…O1 ^x	1.00	2.38	3.324 (4)	158
C11—H11…O1 ^x	0.95	2.40	3.166 (5)	137

Symmetry code: (x) x, -y+1/2, z+1/2.