organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1308-o1309

Absolute configuration of (1R,3S,8R,11R)-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodec-9-en-11-ol

aLaboratoire de Physico-Chimie Moléculaire et Synthése Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: itto35@hotmail.com_or_aititto@uca.ma

(Received 18 June 2013; accepted 3 July 2013; online 24 July 2013)

The absolute configuration of the title compound, C16H26O, was determined as (1R,3S,8R,11R) based mainly on the synthetic pathway but is also implied by the X-ray analysis. The mol­ecule contains fused six- and seven-membered rings. Part of the seven-membered ring was refined as disordered over two sets of sites with the occupancy ratio fixed at 0.86:0.14. The disorder corresponds to a major chair conformation and a minor boat conforation. In the crysyal, O—H⋯O hydrogen bonds connect the mol­ecules into chains parallel to the a axis.

Related literature

For related structures, see: Benharref et al. (2010[Benharref, A., El Ammari, L., Berraho, M. & Lassaba, E. (2010). Acta Cryst. E66, o2463.]); Gassman & Goman (1990[Gassman, P. G. & Goman, D. B. (1990). J. Am. Chem. Soc. 112, 8623.]); Lassaba et al. (1997[Lassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943-1945.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boessenkool & Boyens (1980[Boessenkool, I. K. & Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]). For Bijvoet pair analysis, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For analysis of the absolute structure, see: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]). For chemical properties of related compounds, see: Paresh & Sujit (2012[Paresh, N. C. & Sujit, R. (2012). Tetrahedron, 68, 3776-3785.]); Arfaoui et al. (2010[Arfaoui, J., Boudali, L. K. & Ghorbel, A. (2010). Appl. Clay Sci. 48, 171-178.]). For their biol­ogical properties, see: Chung et al. (2007[Chung, I., Kwon, S. H., Shim, S.-T. & Kyung, K. H. (2007). J. Food Sci. 72, 437-440.]); Servi et al. (2000[Servi, S., Cansiz, A., Digrak, M. & Ahmedzade, M. (2000). Indian J. Chem. Sect. B, 39, 629-633.]). For the synthesis, see: Auhmani et al. (2001[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2001). Acta Cryst. E57, o102-o103.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26O

  • Mr = 234.37

  • Orthorhombic, P 21 21 21

  • a = 6.1457 (1) Å

  • b = 8.2466 (2) Å

  • c = 27.4454 (7) Å

  • V = 1390.96 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.51 mm−1

  • T = 173 K

  • 0.32 × 0.13 × 0.07 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.863, Tmax = 1.000

  • 8172 measured reflections

  • 2653 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.04

  • 2653 reflections

  • 190 parameters

  • 29 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1059 Friedel pairs

  • Flack parameter: −0.1 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.89 (1) 2.32 (1) 3.1612 (6) 159 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Optically active allylic alcohols are highly interesting building blocks that have been widely used in organic transformations (Paresh & Sujit, 2012; Arfaoui et al., 2010). Allylic alcohol functionality is also found in several potent biologically active compounds (Chung et al., 2007; Servi et al., 2000). In the aim of preparing chiral allylic alcohols with sesquiterpenic squeleton, we report herein, the crystal structure of the title compound (1R,3S,8R,11R)-3,7,7,10-tetramethyltricyclo[6.4.0.01, 3]dodec-9-en-11-ol (II). The title compound prepared by treating (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec- 9-ene(I) (Auhmani et al., 2001), with N-bromosuccinimide (NBS).

The molecular structure of (II) is shown in Fig. 1. As observed in related compounds (Gassman & Goman, 1990; Lassaba et al., 1997; Benharref et al., 2010) the molecule contains a fused six-membered and seven-membered ring. The six-membered ring has approximate half-chair conformation with the puckering parameters: Q = 0.452 (2) Å, spherical polar angle θ= 128.8 (3)° and ϕ= 153.4 (4)° (Cremer & Pople, 1975), whereas the seven-membered ring displays either a chair conformation (86%) with a total puckering amplitude of 0.797 (3) Å (Boessenkool & Boyens, 1980) or a boat conformation (14%) with a total puckering amplitude of 1.230 (4) Å. The major chair confornation and minor boat conformation corresponds to the disorder in part of the seven-membered ring.

Although the standrad uncertainties on the Flack's parameter (Flack, 1983; Flack & Bernardinelli, 2000), -0.1 (3), and on the Hooft parameter (Hooft et al., 2008), 0.04 (15) are rather high and limit the reliability of the observed value, the absolute configuration (1R,3S,8R,11R) agrees with the one expected from the synthetic pathway. It addition, inverting the configuration leads to values close to 1 for both Flack and Hooft parameters.

In the crystal, the hydroxyl group is engaged in O—H···O hydrogen bonding with symmetry related molecules forming infinite chains parallel to the a axis (Fig. 2).

Related literature top

For related structures, see: Benharref et al. (2010); Gassman & Goman (1990); Lassaba et al. (1997). For puckering parameters, see: Cremer & Pople (1975); Boessenkool & Boyens (1980). For Bijvoet pair analysis, see: Hooft et al. (2008). For analysis of the absolute structure, see: Flack & Bernardinelli (2000). For chemical properties of related compounds, see: Paresh & Sujit (2012); Arfaoui et al. (2010). For their biological properties, see: Chung et al. (2007); Servi et al. (2000). For the synthesis, see: Auhmani et al. (2001).

Experimental top

To a cooled (273 K) solution of (I) (4.6 mmol) in 50 ml of a solvent mixture THF/H2O (4/1, v/v), NBS (9,16 mmol) was added in small portions, then mixture was kept under stirring at 273 K, for two hours. After completion of the reaction, a 15% sodium hydrogenocarbonate solution was added and the reaction mixture was taken up in ether, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by chromatography on silica gel (230–400 mesh) with Hexane/ethyl acetate (96:4) as eluent to give the title compound in 20% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 0.95 Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3). The hydrogen atom of the hydroxyl group was refined with a restraint of O—H = 0.88 (1)Å.

The C6 carbon atom is disordered over two positions inducing a disorder of the two methyl groups C14 and C15 attached to C7. This disorder was modelled using the tools available in SHELXL97 (Sheldrick, 2008). The two disordered fragment were included in two different parts, PART 1 and 2. The occupancy factor for the two sites was refined using the free variable restraining the sum of the occupancy factors to be equal to 1. The occupancies were ultimately fixed. To be able to calculate the disordered hydrogen atom positions, atom C5 was split in two identical positions which were restrained to have same coordinates and anisotropic thermal parameters by using the EXYZ and EADP instructions in SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (II) with displacement ellipsoids drawn at the 30% probability level. The dashed bonds represent the minor component of disorder. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of compound (II), showing the formation of chains parallel to the a axis formed by hydrogen bonds. The minor component of disorder has been omitted for clarity [symmetry code: (i) x - 1/2, -y + 3/2, -z + 1].
(1R,3S,8R,11R)-3,7,7,10-Tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-ol top
Crystal data top
C16H26OF(000) = 520
Mr = 234.37Dx = 1.119 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 4275 reflections
a = 6.1457 (1) Åθ = 4.8–70.8°
b = 8.2466 (2) ŵ = 0.51 mm1
c = 27.4454 (7) ÅT = 173 K
V = 1390.96 (5) Å3Flattened, colourless
Z = 40.32 × 0.13 × 0.07 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2653 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2539 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 16.1978 pixels mm-1θmax = 70.9°, θmin = 5.6°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.863, Tmax = 1.000l = 3333
8172 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1685P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2653 reflectionsΔρmax = 0.17 e Å3
190 parametersΔρmin = 0.18 e Å3
29 restraintsAbsolute structure: Flack (1983) 1059 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Crystal data top
C16H26OV = 1390.96 (5) Å3
Mr = 234.37Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.1457 (1) ŵ = 0.51 mm1
b = 8.2466 (2) ÅT = 173 K
c = 27.4454 (7) Å0.32 × 0.13 × 0.07 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2653 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2539 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.027
8172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.18 e Å3
2653 reflectionsAbsolute structure: Flack (1983) 1059 Friedel pairs
190 parametersAbsolute structure parameter: 0.1 (3)
29 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies,2012)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1547 (2)0.65315 (18)0.60903 (5)0.0280 (3)
C20.2298 (3)0.82761 (18)0.60418 (6)0.0343 (3)
H2A0.38820.84900.60540.041*
H2B0.14690.89950.58210.041*
C30.1203 (3)0.7732 (2)0.65035 (6)0.0355 (4)
C40.2612 (3)0.7567 (2)0.69559 (6)0.0429 (4)
H4A0.23380.85090.71710.051*
H4B0.41590.76070.68560.051*
C50.2235 (4)0.6023 (3)0.72468 (6)0.0529 (5)0.86
H510.06680.57490.72380.064*0.86
H520.26410.62190.75910.064*0.86
C60.3564 (4)0.4560 (3)0.70501 (7)0.0466 (5)0.86
H610.51150.48830.70360.056*0.86
H620.34460.36640.72890.056*0.86
C70.2906 (3)0.3898 (2)0.65441 (6)0.0385 (4)
C140.0619 (4)0.3224 (3)0.65551 (8)0.0472 (5)0.86
H14A0.05200.23790.68050.071*0.86
H14B0.02640.27580.62360.071*0.86
H14C0.04090.40960.66310.071*0.86
C150.4476 (4)0.2429 (3)0.64537 (9)0.0511 (5)0.86
H15A0.43480.16570.67230.077*0.86
H15B0.59780.28220.64330.077*0.86
H15C0.40820.18920.61480.077*0.86
C5A0.2235 (4)0.6023 (3)0.72468 (6)0.0529 (5)0.14
H5A10.12990.62670.75310.064*0.14
H5A20.36460.56140.73700.064*0.14
C6A0.1122 (19)0.4674 (14)0.6926 (3)0.042 (3)0.14
H6A10.01050.51510.67410.050*0.14
H6A20.05370.38080.71380.050*0.14
C14A0.157 (2)0.2487 (14)0.6310 (4)0.044 (3)0.14
H14D0.23860.20240.60370.066*0.14
H14E0.01730.29080.61920.066*0.14
H14F0.13020.16450.65550.066*0.14
C15A0.481 (2)0.347 (2)0.6806 (6)0.057 (4)0.14
H15D0.44680.26010.70380.086*0.14
H15E0.53580.44150.69830.086*0.14
H15F0.59280.30860.65780.086*0.14
C80.3284 (2)0.52177 (18)0.61381 (5)0.0282 (3)
H80.46510.57960.62320.034*
C90.3722 (2)0.44966 (18)0.56417 (5)0.0308 (3)
H90.49930.38490.56100.037*
C100.2508 (2)0.46765 (18)0.52450 (5)0.0307 (3)
C110.0428 (3)0.56358 (18)0.52503 (5)0.0331 (3)
H110.07310.49880.50840.040*
C120.0336 (2)0.6044 (2)0.57649 (5)0.0314 (3)
H12A0.14010.69440.57500.038*
H12B0.10780.50890.59070.038*
C130.1071 (3)0.8335 (3)0.66163 (7)0.0502 (5)
H13A0.09810.93780.67860.075*
H13B0.18200.75450.68240.075*
H13C0.18830.84730.63120.075*
C160.3177 (3)0.3995 (2)0.47569 (6)0.0427 (4)
H16A0.46200.34970.47850.064*
H16B0.32270.48700.45160.064*
H16C0.21200.31750.46530.064*
O10.0853 (2)0.70648 (14)0.49657 (4)0.0435 (3)
H10.046 (2)0.748 (3)0.4920 (9)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (6)0.0359 (7)0.0246 (6)0.0037 (6)0.0019 (5)0.0029 (6)
C20.0342 (7)0.0337 (7)0.0349 (7)0.0034 (6)0.0026 (6)0.0042 (6)
C30.0302 (8)0.0441 (8)0.0322 (7)0.0030 (7)0.0042 (6)0.0092 (7)
C40.0392 (9)0.0586 (10)0.0308 (8)0.0090 (8)0.0017 (7)0.0121 (7)
C50.0572 (11)0.0760 (13)0.0256 (7)0.0117 (11)0.0014 (7)0.0029 (8)
C60.0424 (10)0.0666 (13)0.0309 (9)0.0071 (11)0.0070 (8)0.0113 (9)
C70.0376 (8)0.0450 (8)0.0330 (8)0.0065 (7)0.0021 (6)0.0080 (7)
C140.0421 (10)0.0557 (12)0.0436 (11)0.0167 (10)0.0012 (9)0.0160 (10)
C150.0506 (12)0.0486 (11)0.0541 (12)0.0052 (10)0.0055 (10)0.0171 (10)
C5A0.0572 (11)0.0760 (13)0.0256 (7)0.0117 (11)0.0014 (7)0.0029 (8)
C6A0.051 (7)0.052 (6)0.022 (4)0.000 (6)0.001 (5)0.005 (5)
C14A0.058 (8)0.041 (6)0.033 (5)0.004 (6)0.007 (6)0.003 (5)
C15A0.040 (7)0.065 (9)0.067 (9)0.012 (7)0.012 (6)0.010 (7)
C80.0222 (6)0.0355 (7)0.0269 (7)0.0048 (6)0.0010 (5)0.0006 (6)
C90.0274 (7)0.0309 (7)0.0340 (7)0.0005 (6)0.0040 (6)0.0008 (6)
C100.0362 (7)0.0285 (7)0.0274 (7)0.0073 (6)0.0030 (6)0.0025 (6)
C110.0335 (7)0.0388 (8)0.0269 (7)0.0068 (6)0.0057 (6)0.0010 (6)
C120.0226 (6)0.0411 (8)0.0305 (7)0.0026 (6)0.0016 (6)0.0002 (6)
C130.0388 (9)0.0636 (11)0.0481 (10)0.0056 (9)0.0103 (8)0.0153 (9)
C160.0561 (10)0.0394 (8)0.0327 (8)0.0079 (8)0.0061 (7)0.0080 (7)
O10.0504 (7)0.0459 (7)0.0343 (5)0.0059 (5)0.0022 (5)0.0083 (5)
Geometric parameters (Å, º) top
C1—C121.516 (2)C15—H15B0.9800
C1—C21.517 (2)C15—H15C0.9800
C1—C31.520 (2)C6A—H6A10.9900
C1—C81.527 (2)C6A—H6A20.9900
C2—C31.503 (2)C14A—H14D0.9800
C2—H2A0.9900C14A—H14E0.9800
C2—H2B0.9900C14A—H14F0.9800
C3—C131.515 (2)C15A—H15D0.9800
C3—C41.520 (2)C15A—H15E0.9800
C4—C51.521 (3)C15A—H15F0.9800
C4—H4A0.9900C8—C91.5106 (19)
C4—H4B0.9900C8—H81.0000
C5—C61.553 (3)C9—C101.328 (2)
C5—H510.9900C9—H90.9500
C5—H520.9900C10—C111.503 (2)
C6—C71.546 (2)C10—C161.510 (2)
C6—H610.9900C11—O11.4378 (19)
C6—H620.9900C11—C121.526 (2)
C7—C15A1.421 (11)C11—H111.0000
C7—C141.512 (3)C12—H12A0.9900
C7—C14A1.563 (11)C12—H12B0.9900
C7—C151.568 (3)C13—H13A0.9800
C7—C81.575 (2)C13—H13B0.9800
C7—C6A1.646 (10)C13—H13C0.9800
C14—H14A0.9800C16—H16A0.9800
C14—H14B0.9800C16—H16B0.9800
C14—H14C0.9800C16—H16C0.9800
C15—H15A0.9800O1—H10.887 (11)
C12—C1—C2115.60 (13)C7—C14—H14B109.5
C12—C1—C3120.38 (13)C7—C14—H14C109.5
C2—C1—C359.34 (10)C7—C15—H15A109.5
C12—C1—C8113.34 (12)C7—C15—H15B109.5
C2—C1—C8117.89 (12)C7—C15—H15C109.5
C3—C1—C8119.71 (12)C7—C6A—H6A1109.7
C3—C2—C160.45 (10)C7—C6A—H6A2109.7
C3—C2—H2A117.7H6A1—C6A—H6A2108.2
C1—C2—H2A117.7C7—C14A—H14D109.5
C3—C2—H2B117.7C7—C14A—H14E109.5
C1—C2—H2B117.7H14D—C14A—H14E109.5
H2A—C2—H2B114.8C7—C14A—H14F109.5
C2—C3—C13119.16 (15)H14D—C14A—H14F109.5
C2—C3—C4117.39 (14)H14E—C14A—H14F109.5
C13—C3—C4112.84 (14)C7—C15A—H15D109.5
C2—C3—C160.21 (9)C7—C15A—H15E109.5
C13—C3—C1119.64 (14)H15D—C15A—H15E109.5
C4—C3—C1118.13 (14)C7—C15A—H15F109.5
C3—C4—C5114.67 (15)H15D—C15A—H15F109.5
C3—C4—H4A108.6H15E—C15A—H15F109.5
C5—C4—H4A108.6C9—C8—C1109.06 (11)
C3—C4—H4B108.6C9—C8—C7113.10 (13)
C5—C4—H4B108.6C1—C8—C7116.61 (12)
H4A—C4—H4B107.6C9—C8—H8105.7
C4—C5—C6112.81 (15)C1—C8—H8105.7
C4—C5—H51109.0C7—C8—H8105.7
C6—C5—H51109.0C10—C9—C8126.54 (14)
C4—C5—H52109.0C10—C9—H9116.7
C6—C5—H52109.0C8—C9—H9116.7
H51—C5—H52107.8C9—C10—C11121.90 (13)
C7—C6—C5116.67 (17)C9—C10—C16122.19 (15)
C7—C6—H61108.1C11—C10—C16115.87 (14)
C5—C6—H61108.1O1—C11—C10105.75 (12)
C7—C6—H62108.1O1—C11—C12112.20 (13)
C5—C6—H62108.1C10—C11—C12112.76 (12)
H61—C6—H62107.3O1—C11—H11108.7
C15A—C7—C14131.7 (7)C10—C11—H11108.7
C15A—C7—C654.4 (7)C12—C11—H11108.7
C14—C7—C6110.81 (16)C1—C12—C11111.64 (12)
C15A—C7—C14A117.1 (9)C1—C12—H12A109.3
C6—C7—C14A140.3 (5)C11—C12—H12A109.3
C15A—C7—C1551.6 (7)C1—C12—H12B109.3
C14—C7—C15106.92 (17)C11—C12—H12B109.3
C6—C7—C15104.71 (16)H12A—C12—H12B108.0
C14A—C7—C1571.6 (6)C3—C13—H13A109.5
C15A—C7—C8114.2 (7)C3—C13—H13B109.5
C14—C7—C8113.93 (14)H13A—C13—H13B109.5
C6—C7—C8110.66 (14)C3—C13—H13C109.5
C14A—C7—C8107.6 (5)H13A—C13—H13C109.5
C15—C7—C8109.33 (14)H13B—C13—H13C109.5
C15A—C7—C6A108.9 (8)C10—C16—H16A109.5
C14—C7—C6A60.7 (4)C10—C16—H16B109.5
C6—C7—C6A57.7 (4)H16A—C16—H16B109.5
C14A—C7—C6A101.5 (7)C10—C16—H16C109.5
C15—C7—C6A144.2 (4)H16A—C16—H16C109.5
C8—C7—C6A106.2 (4)H16B—C16—H16C109.5
C7—C14—H14A109.5C11—O1—H1103.2 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.89 (1)2.32 (1)3.1612 (6)159 (2)
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H26O
Mr234.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.1457 (1), 8.2466 (2), 27.4454 (7)
V3)1390.96 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.51
Crystal size (mm)0.32 × 0.13 × 0.07
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8172, 2653, 2539
Rint0.027
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.04
No. of reflections2653
No. of parameters190
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18
Absolute structureFlack (1983) 1059 Friedel pairs
Absolute structure parameter0.1 (3)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.887 (11)2.317 (13)3.1612 (6)159 (2)
Symmetry code: (i) x1/2, y+3/2, z+1.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationArfaoui, J., Boudali, L. K. & Ghorbel, A. (2010). Appl. Clay Sci. 48, 171–178.  Web of Science CrossRef CAS
First citationAuhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2001). Acta Cryst. E57, o102–o103.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBenharref, A., El Ammari, L., Berraho, M. & Lassaba, E. (2010). Acta Cryst. E66, o2463.  Web of Science CSD CrossRef IUCr Journals
First citationBoessenkool, I. K. & Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
First citationChung, I., Kwon, S. H., Shim, S.-T. & Kyung, K. H. (2007). J. Food Sci. 72, 437–440.  Web of Science CrossRef
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals
First citationGassman, P. G. & Goman, D. B. (1990). J. Am. Chem. Soc. 112, 8623.  CSD CrossRef Web of Science
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals
First citationLassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943–1945.  Web of Science CSD CrossRef CAS IUCr Journals
First citationParesh, N. C. & Sujit, R. (2012). Tetrahedron, 68, 3776–3785.
First citationServi, S., Cansiz, A., Digrak, M. & Ahmedzade, M. (2000). Indian J. Chem. Sect. B, 39, 629–633.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1308-o1309
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds