[Journal logo]

Volume 69 
Part 8 
Page o1271  
August 2013  

Received 25 June 2013
Accepted 10 July 2013
Online 17 July 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.003 Å
R = 0.052
wR = 0.130
Data-to-parameter ratio = 14.8
Details
Open access

(Z)-3-Methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1H-pyrazol-5(4H)-one

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India
Correspondence e-mail: vivek_gupta2k2@hotmail.com

In the title molecule, C20H21N3O, the central pyrazole ring forms dihedral angles of 4.75 (9) and 49.11 (9)°, respectively, with the phenyl and methyl-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and carbonyl O atom are involved in an intramolecular N-H...O hydrogen bond. In the crystal, [pi]-[pi] interactions are observed between benzene rings [centroid-centroid seperation = 3.892 (2) Å] and pyrazole rings [centroid-centroid seperation = 3.626 (2) Å], forming chains along [111]. The H atoms of the methyl group on the p-tolyl substituent were refined as disordered over two sets of sites in a 0.60 (4):0.40 (4) ratio.

Related literature

For applications of pyrazole derivatives, see: Wang et al. (2005[Wang, Y., Yang, Z.-Y. & Wang, B.-D. (2005). Transition Met. Chem. 7, 879-883.]); Vyas et al. (2011[Vyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990, 110-120.]). For general background to Schiff-based pyrazole derivatives, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For related structures, see: Sharma et al. (2012[Sharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o3036.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O

  • Mr = 319.40

  • Triclinic, [P \overline 1]

  • a = 8.8092 (3) Å

  • b = 9.8629 (4) Å

  • c = 10.9278 (4) Å

  • [alpha] = 105.633 (4)°

  • [beta] = 99.971 (3)°

  • [gamma] = 104.961 (3)°

  • V = 852.75 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.08 mm-1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.792, Tmax = 1.000

  • 23723 measured reflections

  • 3341 independent reflections

  • 2067 reflections with I > 2[sigma](I)

  • Rint = 0.066

Refinement
  • R[F2 > 2[sigma](F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.01

  • 3341 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.17 e Å-3

  • [Delta][rho]min = -0.17 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N19-H19...O5 0.92 (3) 1.82 (2) 2.656 (2) 151 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5629 ).


Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. VKG is thankful to the University of Jammu, Jammu, India, for financial support.

References

Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.  [CrossRef] [ChemPort] [Web of Science]
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o3036.  [CSD] [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Vyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990, 110-120.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Wang, Y., Yang, Z.-Y. & Wang, B.-D. (2005). Transition Met. Chem. 7, 879-883.  [Web of Science] [CrossRef]


Acta Cryst (2013). E69, o1271  [ doi:10.1107/S1600536813019144 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.