metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(pyridine-2-carboxyl­ato-κ2N,O)zinc di­methyl­formamide hemisolvate

aInstitute of Applied Physics, Academy of Sciences of R. Moldova, Academy str. 5, MD2028 Chisinau, Republic of Moldova, and bInstitute of Chemistry, Academy of Sciences of R. Moldova, Academy str. 3, MD2028 Chisinau, Republic of Moldova
*Correspondence e-mail: croitor.lilia@gmail.com

(Received 28 June 2013; accepted 9 July 2013; online 13 July 2013)

In the title compound, [Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO, the ZnII ion is coordinated in a distorted octa­hedral N2O4 environment by two N,O-chelating pyridine-2-carboxyl­ate ligands and two cis water mol­ecules. The chelating pyridine-2-carboxyl­ate ligands create two five-membered Zn/N/C/C/O rings, which form a dihedral angle of 86.4 (2)°. In the crystal, O—H⋯O hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to (100). The di­methyl­formamide solvent mol­ecule is disordered about a twofold rotation axis.

Related literature

For background to polydentate ligands, see: Udvardy et al. (2013[Udvardy, A., Bényei, A. C., Juhász, P., Joó, F. & Kathó, Á. (2013). Polyhedron, 60, 1-9.]); Groni et al. (2008[Groni, S., Dorlet, P., Blain, G., Bourcier, S., Guillot, R. & Anxolabehere-Mallart, E. (2008). Inorg. Chem. 47, 3166-3172.]); Golenya et al. (2011[Golenya, I. A., Boyko, A. N., Kalibabchuk, V. A., Haukka, M. & Tomyn, S. V. (2011). Acta Cryst. E67, m1558-m1559.]); Ma et al. (2009[Ma, K., Shi, Q., Hu, M., Cai, X. & Huang, S. (2009). Inorg. Chim. Acta, 362, 4926-4930.]). For related structures, see: Chen & Hu (2011[Chen, W.-T. & Hu, L. (2011). Acta Chim. Slov. 58, 167-170.]); Li et al. (2008[Li, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131.]); Lumme et al. (1969[Lumme, P., Lundgren, G. & Mark, W. (1969). Acta Chem. Scand. 23, 3011-3022.]); Takenaka et al. (1970[Takenaka, A., Utsumi, H., Ishihara, N., Furusaki, A. & Nitta, I. (1970). J. Chem. Soc. Jpn Pure Chem. 91, 921-928.]); Uggla et al. (1969[Uggla, R., Lundell, S. & Patrikka, J. (1969). Suom. Kemistil. B, 42, 270.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO

  • Mr = 382.16

  • Monoclinic, C 2/c

  • a = 25.777 (3) Å

  • b = 8.6754 (4) Å

  • c = 16.7916 (17) Å

  • β = 125.228 (15)°

  • V = 3067.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.02 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.906, Tmax = 1.000

  • 4865 measured reflections

  • 2844 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.114

  • S = 1.00

  • 2844 reflections

  • 244 parameters

  • 162 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.86 (2) 1.86 (2) 2.715 (6) 174 (5)
O1W—H2W1⋯O2ii 0.86 (2) 1.89 (2) 2.723 (5) 163 (5)
O2W—H1W2⋯O2iii 0.86 (2) 1.98 (3) 2.768 (5) 152 (4)
O2W—H2W2⋯O3i 0.87 (2) 1.85 (2) 2.704 (5) 170 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polydentate ligands such as pyridine-2-carboxylic acid (Hpic=picolinic acid) play important role in coordination chemistry and homogeneous catalysis. The combination of pyridyl and carboxyl groups in a single bridge-type ligand results in highly interconnected networks and gives limitless possibilities for increased network stability (Udvardy et al., 2013; Groni et al., 2008; Golenya et al. 2011). The COO- group and the nitrogen atom in Hpic have strong coordination abilities and multiple coordination modes (Ma et al., 2009). Herein, we report the crystal structure of the title compound.

The molecular structure of the title complex is shown in Fig. 1. The ZnII ion is coordinated in a distorted octahedral N2O4 environment by two pyridine N-atoms, two carboxylate O atoms and two O atoms of two cis-coordinated water molecules. Each of two coordinated pic residues results in the formation of a five-membered chelate ring. The dihedral angle between two chelate rings is 86.4 (2)°. In some similar pyridine-2-carboxylato Zn(II) complexes (Chen & Hu, 2011; Li et al., 2008; Lumme et al., 1969; Takenaka et al., 1970; Uggla et al., 1969) the two pic ligands lie in the equatorial plane, and the water molecules are in a trans-arrangement.

The crystal packing is directed by hydrogen bond interactions with the participation of water H-donor atoms and carboxylic group O atoms acting as acceptors. Complex molecules are combined into ladder-like tapes via alternation of two similar R22(8) (Bernstein et al., 1995) graph-set motifs (Table 1, Figs. 2 and 3). The overall hydrogen bond motif is a two-dimensional layer parallel to (100). The title compound is isotypic with [Mn(C6H4NO2)2(H2O)2].0.5C2H3N (Groni et al., 2008), where the dimethylformamide solvent in the title compound is substituted by the acetonitrile.

Related literature top

For background to polydentate ligands, see: Udvardy et al. (2013); Groni et al. (2008); Golenya et al. (2011); Ma et al. (2009). For related structures, see: Chen & Hu (2011); Li et al. (2008); Lumme et al. (1969); Takenaka et al. (1970); Uggla et al. (1969). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To Zn(BF4)2(240 mg, 1 mmol) dissolved in 15 ml of water was added Hpic(246 mg, 2 mmol) dissolved in 15 ml of mixture methanol/dimethylformamide 1:1 (v/v). The reaction mixture was refluxed for ~ 15 min, and upon cooling to room temperature prism-shape colorless crystals precipitated (yield: 52%).

Refinement top

The C-bound hydrogen atoms were placed in calculated positions with C—H = 0.93Å and were treated using a riding-model approximation with Uiso(H)=1.2Ueq(C) or C—H = 0.96Å and Uiso(H)=1.5Ueq(C) for methyl H atoms. Water O—H hydrogen atoms were located from a difference Fourier map at intermediate stage of the refinement and the O—H and H···H distances were restrained to be 0.86 (1) and 1.46 (1) Å. These hydrogen atoms were refined with isotropic displacement parameter Uiso(H)=1.5Ueq(O). The dimethylformamide molecule is disordered about crystallographic twofold rotation axis.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Zn(C6H4NO2)2(H2O)2]. Displacement ellipsoids are shown at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View along the crystallographic c axis. Solvent molecules are not shown. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure showing incorporation of DMF molecules in the crystal. The view is along the crystallographic b axis. Hydrogen bonds are shown as dashed lines.
Diaquabis(pyridine-2-carboxylato-κ2N,O)zinc dimethylformamide hemisolvate top
Crystal data top
[Zn(C6H4NO2)2(H2O)2]·0.5C3H7NOF(000) = 1568
Mr = 382.16Dx = 1.655 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 957 reflections
a = 25.777 (3) Åθ = 3.0–28.9°
b = 8.6754 (4) ŵ = 1.64 mm1
c = 16.7916 (17) ÅT = 293 K
β = 125.228 (15)°Prism, colourless
V = 3067.4 (5) Å30.18 × 0.12 × 0.02 mm
Z = 8
Data collection top
Agilent Xcalibur Eos
diffractometer
2844 independent reflections
Radiation source: Enhance (Mo) X-ray Source1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 15.9914 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 3125
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 105
Tmin = 0.906, Tmax = 1.000l = 920
4865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
2844 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.47 e Å3
162 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn(C6H4NO2)2(H2O)2]·0.5C3H7NOV = 3067.4 (5) Å3
Mr = 382.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.777 (3) ŵ = 1.64 mm1
b = 8.6754 (4) ÅT = 293 K
c = 16.7916 (17) Å0.18 × 0.12 × 0.02 mm
β = 125.228 (15)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2844 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1772 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 1.000Rint = 0.055
4865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062162 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.47 e Å3
2844 reflectionsΔρmin = 0.44 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.18837 (3)0.40000 (7)0.78138 (4)0.0278 (2)
N10.18028 (19)0.6106 (5)0.8391 (3)0.0273 (11)
N20.08845 (19)0.3806 (5)0.6684 (3)0.0253 (10)
O10.17673 (17)0.3193 (4)0.8877 (2)0.0338 (10)
O20.17327 (17)0.3959 (4)1.0115 (2)0.0367 (10)
O30.18125 (17)0.1902 (4)0.7129 (3)0.0335 (10)
O40.11570 (19)0.0343 (5)0.5895 (3)0.0555 (13)
C10.1798 (3)0.7558 (6)0.8114 (4)0.0396 (16)
H10.18370.77220.76030.048*
C20.1738 (3)0.8813 (6)0.8553 (4)0.0433 (16)
H20.17390.98080.83470.052*
C30.1677 (3)0.8573 (7)0.9300 (4)0.0441 (17)
H30.16330.94050.96060.053*
C40.1681 (2)0.7106 (6)0.9593 (4)0.0336 (14)
H40.16460.69311.01070.040*
C50.1738 (2)0.5873 (6)0.9120 (3)0.0256 (13)
C60.1751 (2)0.4195 (6)0.9396 (4)0.0279 (13)
C70.0422 (3)0.4729 (6)0.6531 (4)0.0364 (15)
H70.05290.55980.69210.044*
C80.0215 (3)0.4441 (7)0.5811 (4)0.0461 (17)
H80.05290.50860.57350.055*
C90.0372 (3)0.3196 (7)0.5217 (4)0.0428 (16)
H90.07940.29900.47170.051*
C100.0109 (3)0.2248 (7)0.5376 (4)0.0376 (15)
H100.00140.13930.49800.045*
C110.0729 (3)0.2570 (6)0.6122 (4)0.0268 (13)
C120.1270 (3)0.1516 (6)0.6384 (4)0.0326 (14)
O1W0.28549 (18)0.3692 (5)0.8823 (3)0.0389 (10)
H1W10.3148 (18)0.425 (5)0.888 (4)0.05 (2)*
H2W10.298 (2)0.296 (4)0.924 (3)0.042 (19)*
O2W0.2112 (2)0.5202 (5)0.6968 (3)0.0413 (11)
H1W20.199 (2)0.512 (5)0.6369 (16)0.031 (16)*
H2W20.2454 (17)0.575 (6)0.732 (3)0.05 (2)*
O1X0.9935 (9)0.7274 (12)0.7077 (8)0.142 (8)0.50
N1X0.9961 (14)0.9688 (8)0.7567 (15)0.065 (4)0.50
C1X0.9916 (9)0.8645 (13)0.6968 (9)0.093 (8)0.50
H1X0.98650.89990.64040.112*0.50
C2X1.0023 (11)0.9255 (17)0.8428 (12)0.090 (7)0.50
H2XA0.96110.92290.83070.135*0.50
H2XB1.02860.99900.89330.135*0.50
H2XC1.02140.82520.86290.135*0.50
C3X0.996 (3)1.1310 (9)0.739 (3)0.194 (10)0.50
H3XA1.03851.16730.77150.292*0.50
H3XB0.97501.18540.76310.292*0.50
H3XC0.97311.14860.67000.292*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0328 (4)0.0260 (4)0.0265 (4)0.0006 (3)0.0182 (3)0.0013 (3)
N10.034 (3)0.026 (2)0.026 (2)0.001 (2)0.020 (2)0.002 (2)
N20.024 (3)0.024 (3)0.028 (3)0.001 (2)0.015 (2)0.000 (2)
O10.045 (3)0.027 (2)0.032 (2)0.002 (2)0.024 (2)0.0019 (18)
O20.046 (3)0.041 (2)0.032 (2)0.005 (2)0.027 (2)0.0093 (19)
O30.024 (2)0.033 (2)0.034 (2)0.0005 (19)0.011 (2)0.0076 (19)
O40.039 (3)0.047 (3)0.065 (3)0.000 (2)0.022 (3)0.030 (2)
C10.057 (5)0.029 (3)0.038 (4)0.006 (3)0.030 (4)0.004 (3)
C20.053 (4)0.022 (3)0.053 (4)0.008 (3)0.030 (4)0.006 (3)
C30.053 (5)0.032 (4)0.049 (4)0.003 (3)0.030 (4)0.011 (3)
C40.039 (4)0.037 (4)0.031 (3)0.002 (3)0.024 (3)0.003 (3)
C50.019 (3)0.029 (3)0.020 (3)0.001 (3)0.006 (3)0.006 (3)
C60.021 (3)0.030 (3)0.027 (3)0.000 (3)0.010 (3)0.005 (3)
C70.039 (4)0.028 (3)0.041 (4)0.008 (3)0.023 (3)0.001 (3)
C80.036 (4)0.045 (4)0.062 (5)0.019 (3)0.031 (4)0.013 (3)
C90.026 (4)0.050 (4)0.046 (4)0.001 (3)0.017 (3)0.001 (4)
C100.029 (4)0.036 (4)0.038 (4)0.005 (3)0.013 (3)0.010 (3)
C110.032 (3)0.024 (3)0.031 (3)0.002 (3)0.021 (3)0.001 (3)
C120.037 (4)0.025 (3)0.040 (4)0.005 (3)0.025 (3)0.003 (3)
O1W0.030 (3)0.032 (3)0.041 (3)0.005 (2)0.013 (2)0.012 (2)
O2W0.049 (3)0.049 (3)0.026 (2)0.020 (2)0.022 (2)0.005 (2)
O1X0.117 (11)0.095 (9)0.19 (2)0.029 (11)0.074 (17)0.078 (9)
N1X0.123 (11)0.043 (6)0.074 (8)0.023 (15)0.082 (8)0.005 (13)
C1X0.072 (14)0.13 (2)0.071 (16)0.034 (17)0.040 (14)0.035 (15)
C2X0.132 (18)0.084 (15)0.072 (14)0.015 (12)0.069 (14)0.015 (10)
C3X0.45 (3)0.055 (9)0.26 (2)0.02 (5)0.31 (3)0.03 (3)
Geometric parameters (Å, º) top
Zn1—O1W2.078 (4)C7—H70.9300
Zn1—O12.094 (3)C8—C91.363 (7)
Zn1—O2W2.101 (4)C8—H80.9300
Zn1—O32.104 (3)C9—C101.379 (7)
Zn1—N12.134 (4)C9—H90.9300
Zn1—N22.150 (4)C10—C111.375 (7)
N1—C11.341 (6)C10—H100.9300
N1—C51.343 (6)C11—C121.506 (7)
N2—C111.329 (6)O1W—H1W10.857 (18)
N2—C71.333 (6)O1W—H2W10.857 (18)
O1—C61.249 (6)O2W—H1W20.863 (18)
O2—C61.251 (6)O2W—H2W20.866 (19)
O3—C121.271 (6)O1X—C1X1.1999
O4—C121.233 (6)N1X—C1X1.3069
C1—C21.373 (7)N1X—C2X1.4118
C1—H10.9300N1X—C3X1.4373
C2—C31.368 (7)C1X—H1X0.9300
C2—H20.9300C2X—H2XA0.9600
C3—C41.362 (7)C2X—H2XB0.9600
C3—H30.9300C2X—H2XC0.9600
C4—C51.390 (7)C3X—H3XA0.9600
C4—H40.9300C3X—H3XB0.9600
C5—C61.523 (7)C3X—H3XC0.9600
C7—C81.389 (7)
O1W—Zn1—O187.68 (16)N1—C5—C6115.4 (4)
O1W—Zn1—O2W86.53 (18)C4—C5—C6123.6 (5)
O1—Zn1—O2W167.39 (15)O1—C6—O2126.5 (5)
O1W—Zn1—O391.07 (15)O1—C6—C5117.2 (5)
O1—Zn1—O399.57 (14)O2—C6—C5116.3 (5)
O2W—Zn1—O391.74 (16)N2—C7—C8122.5 (5)
O1W—Zn1—N197.31 (16)N2—C7—H7118.8
O1—Zn1—N178.44 (15)C8—C7—H7118.8
O2W—Zn1—N191.19 (17)C9—C8—C7118.9 (5)
O3—Zn1—N1171.28 (15)C9—C8—H8120.6
O1W—Zn1—N2167.46 (16)C7—C8—H8120.6
O1—Zn1—N292.17 (15)C8—C9—C10118.4 (6)
O2W—Zn1—N295.90 (16)C8—C9—H9120.8
O3—Zn1—N276.58 (15)C10—C9—H9120.8
N1—Zn1—N294.94 (16)C11—C10—C9119.9 (5)
C1—N1—C5118.5 (5)C11—C10—H10120.1
C1—N1—Zn1129.1 (4)C9—C10—H10120.1
C5—N1—Zn1112.4 (3)N2—C11—C10121.8 (5)
C11—N2—C7118.5 (5)N2—C11—C12115.7 (5)
C11—N2—Zn1114.0 (4)C10—C11—C12122.5 (5)
C7—N2—Zn1127.4 (4)O4—C12—O3125.2 (5)
C6—O1—Zn1116.2 (3)O4—C12—C11118.9 (5)
C12—O3—Zn1117.7 (3)O3—C12—C11115.9 (5)
N1—C1—C2122.7 (5)Zn1—O1W—H1W1126 (3)
N1—C1—H1118.7Zn1—O1W—H2W1118 (3)
C2—C1—H1118.7H1W1—O1W—H2W1116 (3)
C3—C2—C1118.7 (5)Zn1—O2W—H1W2133 (3)
C3—C2—H2120.6Zn1—O2W—H2W2113 (3)
C1—C2—H2120.6H1W2—O2W—H2W2113 (3)
C4—C3—C2119.5 (5)C1X—N1X—C2X120.7
C4—C3—H3120.3C1X—N1X—C3X122.1
C2—C3—H3120.3C2X—N1X—C3X117.2
C3—C4—C5119.7 (5)O1X—C1X—N1X126.3
C3—C4—H4120.2O1X—C1X—H1X116.9
C5—C4—H4120.2N1X—C1X—H1X116.9
N1—C5—C4121.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.86 (2)1.86 (2)2.715 (6)174 (5)
O1W—H2W1···O2ii0.86 (2)1.89 (2)2.723 (5)163 (5)
O2W—H1W2···O2iii0.86 (2)1.98 (3)2.768 (5)152 (4)
O2W—H2W2···O3i0.87 (2)1.85 (2)2.704 (5)170 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO
Mr382.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.777 (3), 8.6754 (4), 16.7916 (17)
β (°) 125.228 (15)
V3)3067.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.18 × 0.12 × 0.02
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.906, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4865, 2844, 1772
Rint0.055
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.114, 1.00
No. of reflections2844
No. of parameters244
No. of restraints162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.857 (18)1.86 (2)2.715 (6)174 (5)
O1W—H2W1···O2ii0.857 (18)1.89 (2)2.723 (5)163 (5)
O2W—H1W2···O2iii0.863 (18)1.98 (3)2.768 (5)152 (4)
O2W—H2W2···O3i0.866 (19)1.85 (2)2.704 (5)170 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z1/2.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, W.-T. & Hu, L. (2011). Acta Chim. Slov. 58, 167–170.  CAS PubMed Google Scholar
First citationGolenya, I. A., Boyko, A. N., Kalibabchuk, V. A., Haukka, M. & Tomyn, S. V. (2011). Acta Cryst. E67, m1558–m1559.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroni, S., Dorlet, P., Blain, G., Bourcier, S., Guillot, R. & Anxolabehere-Mallart, E. (2008). Inorg. Chem. 47, 3166–3172.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumme, P., Lundgren, G. & Mark, W. (1969). Acta Chem. Scand. 23, 3011–3022.  CrossRef CAS Web of Science Google Scholar
First citationMa, K., Shi, Q., Hu, M., Cai, X. & Huang, S. (2009). Inorg. Chim. Acta, 362, 4926–4930.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakenaka, A., Utsumi, H., Ishihara, N., Furusaki, A. & Nitta, I. (1970). J. Chem. Soc. Jpn Pure Chem. 91, 921–928.  CAS Google Scholar
First citationUdvardy, A., Bényei, A. C., Juhász, P., Joó, F. & Kathó, Á. (2013). Polyhedron, 60, 1–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationUggla, R., Lundell, S. & Patrikka, J. (1969). Suom. Kemistil. B, 42, 270.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds