[Journal logo]

Volume 69 
Part 8 
Pages o1251-o1252  
August 2013  

Received 18 June 2013
Accepted 4 July 2013
Online 13 July 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.005 Å
R = 0.039
wR = 0.091
Data-to-parameter ratio = 16.2
Details
Open access

1-(5-Bromo-2-oxoindolin-3-ylidene)thiosemicarbazone

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-903 Rio Grande-RS, Brazil,bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
Correspondence e-mail: adriano@daad-alumni.de

The title molecule, C9H7BrN4OS, is essentially planar [r.m.s. deviation = 0.066 (2) Å], the maximum deviation from the mean plane through the non-H atoms being 0.190 (3) Å for the terminal amine N atom. In the crystal, molecules are linked through N-H...O and N-H...S interactions, generating infinite chains along the b-axis direction. In turn, the chains are stacked along the a axis via [pi]-[pi] interactions [centroid-centroid distance = 3.470 (2) Å] and further connected by N-H...Br interactions into a three-dimensional network. An intramolecular N-H...O hydrogen bond is also observed.

Related literature

For the pharmacological properties of isatin-thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003[Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.]). For the synthesis of 5-bromoisatin-3-thiosemicarbazone, see: Campaigne & Archer (1952[Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.]). For the crystal structure of 1-(5-bromo-2-oxoindolin-3-ylidene)thiosemicarbazide acetonitrile monosolvate, see: Pederzolli et al. (2011[Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7BrN4OS

  • Mr = 299.16

  • Orthorhombic, P 21 21 21

  • a = 4.0185 (2) Å

  • b = 14.6418 (8) Å

  • c = 18.8276 (11) Å

  • V = 1107.78 (10) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 3.88 mm-1

  • T = 293 K

  • 0.10 × 0.06 × 0.04 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • 7791 measured reflections

  • 2405 independent reflections

  • 2106 reflections with I > 2[sigma](I)

  • Rint = 0.051

Refinement
  • R[F2 > 2[sigma](F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.02

  • 2405 reflections

  • 148 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.73 e Å-3

  • [Delta][rho]min = -0.55 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 951 Friedel pairs

  • Absolute structure parameter: -0.015 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...S1i 0.86 2.82 3.507 (3) 139
N3-H3...O1 0.86 2.04 2.726 (4) 135
N4-H2N4...Br1ii 0.83 2.91 3.665 (4) 152
N4-H1N4...O1iii 0.87 1.99 2.851 (4) 167
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2109 ).


Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig-Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029-1 and PRONEX-CNPq-FAPERGS projects. KCTB thanks FAPEAM for the award of a scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.  [CrossRef]
Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.  [CrossRef] [PubMed] [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804.  [CSD] [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1251-o1252   [ doi:10.1107/S1600536813018564 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.