supplementary materials


lr2111 scheme

Acta Cryst. (2013). E69, m468    [ doi:10.1107/S1600536813019570 ]

(Azido-[kappa]N){(E)-2-[1-(pyridin-2-yl)ethylideneamino]phenolato-[kappa]3N,N',O}copper(II)

A. Datta, J. K. Clegg, J.-H. Huang and S.-C. Sheu

Abstract top

In the title complex, [Cu(C13H11N2O)(N3)], the CuII cation is four-coordinated by an N2O donor set of the tridentate Schiff base ligand and by the terminal N atom of the azide anion, forming a slightly distorted square-planar configuration.

Comment top

In the title complex, [Cu(C13H11N2O)(N3)], the CuII ion exhibits a slightly distorted square-planar coordination environment defined by the deprotonated tridentate Schiff base ligand that coordinates via the phenolate O, imine N and pyridyl N atoms and the N atom of azide ion (Fig. 1). The bond angles around CuII ion are slightly distorted from those of regular square-planar and range from 81.53 (7) to 175.89 (7)°. The [CuN3O] square plane and the aryl and pyridyl rings in the Schiff base are almost coplanar. The dihedral angles among these three planes are 3.55 (6)°, 4.70 (5)° and 4.99 (7)°. The bond distances to the central copper [Cu—Npy = 1.9775 (16) Å, Cu—Nimine = 1.9682 (16) Å, Cu—Nazide = 1.9470 (18) Å, Cu—Ophenolic = 1.9133 (14) Å] (Table 1) are similar to those in complexes [Cu(C14H13N2O2)(N3)] and [Cu(C13H10ClN2O)Cl] (Sun, 2008; Wang et al., 2012). The bond distances and bond angles in azide ion bound to CuII ion are similar to those in complexes [Cu(C14H13N2O2)(N3)] and [Cu(C16H23N2O)(N3)] (Sun, 2008; Talukder et al., 2004). The N3—N4 bond [1.201 (3) Å] in the complex is longer than the N4—N5 bond [1.157 (3) Å]. The NNN moiety is nearly linear and shows a bent coordination mode with the CuII ion [(N3—N4—N5/Cu1—N3—N4 = 177.4 (2)/117.06 (15)°].

Related literature top

For related structures, see: Talukder et al. (2004); Sun (2008); Wang et al. (2012); Yu (2012). For the synthesis, see: Shita et al. (2009).

Experimental top

The tridentate Schiff base ligand was prepared according to literature procedure (Shita et al., 2009). To a hot methanolic solution (20 ml) of Cu(CCl3COO)2.6H2O (0.484 g, 1.0 mmol), the ligand (1.0 mmol) was added, which produced immediately an intensely green solution. The solution was then heated to boiling and then, an aqueous solution (10 ml) of sodium azide (0.065 g, 1 mmol) was added dropwise slowly over 15 min in hot condition. After the completion of addition of sodium azide, the resulting solution was kept under boiling for another 10 min. On cooling and after slow evaporation of the solution, the dark-green plate-shaped single crystals of the complex were separated out in 3 d. The crystals were filtered off and washed with water and dried in air.

Refinement top

H atoms were placed at calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and 1.5 Ueq(C)

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and WinGX32 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.
(Azido-κN){(E)-2-[1-(pyridin-2-yl)ethylideneamino]phenolato-κ3N,N',O}copper(II) top
Crystal data top
[Cu(C13H11CuN2O)(N3)]F(000) = 644
Mr = 316.81Dx = 1.712 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2697 reflections
a = 6.5881 (3) Åθ = 4.4–71.9°
b = 10.1576 (3) ŵ = 2.54 mm1
c = 18.3884 (7) ÅT = 120 K
β = 92.810 (3)°Plate, green
V = 1229.06 (8) Å30.57 × 0.31 × 0.04 mm
Z = 4
Data collection top
Agilent Xcalibur Gemini ultra
diffractometer with Eos detector
2357 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2180 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 16.1183 pixels mm-1θmax = 72.0°, θmin = 4.8°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1112
Tmin = 0.709, Tmax = 1.000l = 2122
4723 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.5226P]
where P = (Fo2 + 2Fc2)/3
2357 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C13H11CuN2O)(N3)]V = 1229.06 (8) Å3
Mr = 316.81Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.5881 (3) ŵ = 2.54 mm1
b = 10.1576 (3) ÅT = 120 K
c = 18.3884 (7) Å0.57 × 0.31 × 0.04 mm
β = 92.810 (3)°
Data collection top
Agilent Xcalibur Gemini ultra
diffractometer with Eos detector
2357 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2180 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 1.000Rint = 0.021
4723 measured reflectionsθmax = 72.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.34 e Å3
S = 1.05Δρmin = 0.40 e Å3
2357 reflectionsAbsolute structure: ?
182 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1572 (3)0.7721 (2)0.10880 (11)0.0224 (4)
H110.13110.83640.14470.027*
C120.1511 (3)0.80806 (19)0.03531 (13)0.0238 (4)
H120.12170.89650.02160.029*
C130.1878 (3)0.7152 (2)0.01764 (11)0.0214 (4)
H130.18420.74010.06750.026*
N30.3338 (3)0.14937 (18)0.06852 (10)0.0267 (4)
N40.1971 (3)0.12200 (16)0.10667 (9)0.0225 (4)
N50.0684 (3)0.09080 (19)0.14363 (10)0.0300 (4)
C10.3018 (3)0.3279 (2)0.13806 (11)0.0190 (4)
C20.3721 (3)0.1131 (2)0.10036 (11)0.0233 (4)
H20.39750.05180.06200.028*
C30.3734 (3)0.0698 (2)0.17231 (12)0.0270 (4)
H30.39920.02010.18290.032*
C40.3368 (3)0.1587 (2)0.22775 (12)0.0281 (5)
H40.33460.13090.27710.034*
C50.3030 (3)0.2905 (2)0.21045 (11)0.0250 (4)
H50.28090.35390.24800.030*
C60.2590 (3)0.4639 (2)0.11276 (10)0.0190 (4)
C70.2071 (3)0.5713 (2)0.16602 (11)0.0269 (4)
H7A0.07530.60950.15530.040*
H7B0.20010.53510.21550.040*
H7C0.31200.63970.16220.040*
C80.2306 (3)0.58395 (19)0.00240 (10)0.0176 (4)
C90.2387 (3)0.54692 (19)0.07755 (10)0.0181 (4)
C100.2008 (3)0.6441 (2)0.12986 (11)0.0208 (4)
H100.20530.62140.18000.025*
N10.3362 (2)0.23872 (17)0.08411 (9)0.0193 (3)
N20.2667 (2)0.47613 (16)0.04273 (9)0.0172 (3)
O10.2789 (2)0.42425 (13)0.09719 (7)0.0201 (3)
Cu10.31041 (4)0.31370 (3)0.014256 (14)0.01721 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0158 (9)0.0196 (10)0.0318 (11)0.0014 (7)0.0007 (8)0.0067 (8)
C120.0179 (10)0.0169 (10)0.0362 (12)0.0003 (7)0.0015 (8)0.0001 (8)
C130.0173 (10)0.0203 (10)0.0262 (10)0.0010 (7)0.0023 (8)0.0030 (8)
N30.0297 (10)0.0213 (8)0.0294 (9)0.0053 (7)0.0047 (8)0.0048 (7)
N40.0305 (9)0.0141 (8)0.0221 (8)0.0025 (7)0.0051 (7)0.0003 (6)
N50.0361 (10)0.0259 (9)0.0278 (9)0.0051 (8)0.0021 (8)0.0035 (8)
C10.0107 (9)0.0248 (10)0.0213 (9)0.0000 (7)0.0001 (7)0.0001 (8)
C20.0186 (9)0.0242 (10)0.0271 (10)0.0020 (8)0.0013 (7)0.0035 (8)
C30.0209 (10)0.0283 (11)0.0320 (11)0.0001 (8)0.0019 (8)0.0091 (9)
C40.0211 (10)0.0381 (12)0.0253 (10)0.0010 (9)0.0020 (8)0.0096 (9)
C50.0190 (10)0.0330 (11)0.0230 (10)0.0007 (8)0.0010 (8)0.0004 (9)
C60.0117 (8)0.0239 (10)0.0215 (9)0.0010 (7)0.0015 (7)0.0035 (8)
C70.0322 (11)0.0283 (11)0.0202 (9)0.0067 (9)0.0017 (8)0.0039 (8)
C80.0117 (8)0.0191 (9)0.0220 (9)0.0007 (7)0.0006 (7)0.0001 (7)
C90.0124 (8)0.0184 (9)0.0236 (9)0.0006 (7)0.0017 (7)0.0008 (8)
C100.0157 (9)0.0233 (10)0.0233 (9)0.0006 (7)0.0012 (7)0.0021 (8)
N10.0139 (7)0.0221 (8)0.0218 (8)0.0013 (6)0.0016 (6)0.0016 (7)
N20.0123 (7)0.0193 (8)0.0199 (7)0.0003 (6)0.0000 (6)0.0018 (6)
O10.0241 (7)0.0180 (7)0.0182 (6)0.0025 (5)0.0011 (5)0.0012 (5)
Cu10.0182 (2)0.01587 (19)0.01753 (19)0.00191 (10)0.00069 (12)0.00060 (10)
Geometric parameters (Å, º) top
C11—C101.383 (3)C3—H30.9500
C11—C121.399 (3)C4—C51.396 (3)
C11—H110.9500C4—H40.9500
C12—C131.385 (3)C5—H50.9500
C12—H120.9500C6—N21.292 (3)
C13—C81.408 (3)C6—C71.495 (3)
C13—H130.9500C7—H7A0.9800
N3—N41.201 (3)C7—H7B0.9800
N3—Cu11.9470 (18)C7—H7C0.9800
N4—N51.157 (3)C8—N21.402 (3)
C1—N11.354 (3)C8—C91.431 (3)
C1—C51.385 (3)C9—O11.320 (2)
C1—C61.489 (3)C9—C101.409 (3)
C2—N11.334 (3)C10—H100.9500
C2—C31.395 (3)N1—Cu11.9775 (16)
C2—H20.9500N2—Cu11.9682 (16)
C3—C41.375 (3)O1—Cu11.9134 (14)
C10—C11—C12120.79 (18)C6—C7—H7A109.5
C10—C11—H11119.6C6—C7—H7B109.5
C12—C11—H11119.6H7A—C7—H7B109.5
C13—C12—C11120.23 (19)C6—C7—H7C109.5
C13—C12—H12119.9H7A—C7—H7C109.5
C11—C12—H12119.9H7B—C7—H7C109.5
C12—C13—C8120.02 (19)N2—C8—C13128.50 (18)
C12—C13—H13120.0N2—C8—C9111.54 (17)
C8—C13—H13120.0C13—C8—C9119.96 (18)
N4—N3—Cu1117.06 (14)O1—C9—C10120.94 (18)
N5—N4—N3177.4 (2)O1—C9—C8120.65 (17)
N1—C1—C5120.84 (19)C10—C9—C8118.41 (18)
N1—C1—C6114.76 (17)C11—C10—C9120.59 (19)
C5—C1—C6124.37 (19)C11—C10—H10119.7
N1—C2—C3121.6 (2)C9—C10—H10119.7
N1—C2—H2119.2C2—N1—C1120.03 (17)
C3—C2—H2119.2C2—N1—Cu1126.68 (14)
C4—C3—C2119.1 (2)C1—N1—Cu1113.19 (14)
C4—C3—H3120.4C6—N2—C8131.76 (18)
C2—C3—H3120.4C6—N2—Cu1116.57 (14)
C3—C4—C5119.0 (2)C8—N2—Cu1111.37 (12)
C3—C4—H4120.5C9—O1—Cu1111.35 (12)
C5—C4—H4120.5O1—Cu1—N395.95 (7)
C1—C5—C4119.3 (2)O1—Cu1—N285.04 (6)
C1—C5—H5120.3N3—Cu1—N2175.89 (7)
C4—C5—H5120.3O1—Cu1—N1166.56 (7)
N2—C6—C1113.71 (17)N3—Cu1—N197.49 (8)
N2—C6—C7125.38 (19)N2—Cu1—N181.53 (7)
C1—C6—C7120.89 (17)
C10—C11—C12—C130.3 (3)C7—C6—N2—C80.6 (3)
C11—C12—C13—C80.3 (3)C1—C6—N2—Cu14.7 (2)
Cu1—N3—N4—N5166 (5)C7—C6—N2—Cu1173.67 (15)
N1—C2—C3—C40.0 (3)C13—C8—N2—C64.9 (3)
C2—C3—C4—C51.1 (3)C9—C8—N2—C6174.29 (18)
N1—C1—C5—C41.1 (3)C13—C8—N2—Cu1178.26 (16)
C6—C1—C5—C4177.32 (19)C9—C8—N2—Cu10.96 (18)
C3—C4—C5—C11.6 (3)C10—C9—O1—Cu1177.20 (14)
N1—C1—C6—N21.7 (2)C8—C9—O1—Cu12.2 (2)
C5—C1—C6—N2179.81 (18)C9—O1—Cu1—N3173.93 (13)
N1—C1—C6—C7176.72 (17)C9—O1—Cu1—N22.06 (12)
C5—C1—C6—C71.7 (3)C9—O1—Cu1—N15.2 (3)
C12—C13—C8—N2178.35 (18)N4—N3—Cu1—O156.36 (17)
C12—C13—C8—C90.8 (3)N4—N3—Cu1—N247.4 (11)
N2—C8—C9—O10.8 (2)N4—N3—Cu1—N1123.42 (16)
C13—C8—C9—O1179.90 (17)C6—N2—Cu1—O1176.11 (14)
N2—C8—C9—C10178.59 (16)C8—N2—Cu1—O11.67 (12)
C13—C8—C9—C100.7 (3)C6—N2—Cu1—N372.0 (10)
C12—C11—C10—C90.4 (3)C8—N2—Cu1—N3102.5 (10)
O1—C9—C10—C11179.47 (17)C6—N2—Cu1—N14.61 (14)
C8—C9—C10—C110.1 (3)C8—N2—Cu1—N1179.05 (13)
C3—C2—N1—C10.6 (3)C2—N1—Cu1—O1177.1 (2)
C3—C2—N1—Cu1175.50 (15)C1—N1—Cu1—O16.5 (4)
C5—C1—N1—C20.1 (3)C2—N1—Cu1—N33.81 (17)
C6—C1—N1—C2178.62 (16)C1—N1—Cu1—N3172.56 (14)
C5—C1—N1—Cu1176.55 (15)C2—N1—Cu1—N2179.78 (17)
C6—C1—N1—Cu12.0 (2)C1—N1—Cu1—N23.41 (13)
C1—C6—N2—C8177.73 (17)

Experimental details

Crystal data
Chemical formula[Cu(C13H11CuN2O)(N3)]
Mr316.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.5881 (3), 10.1576 (3), 18.3884 (7)
β (°) 92.810 (3)
V3)1229.06 (8)
Z4
Radiation typeCu Kα
µ (mm1)2.54
Crystal size (mm)0.57 × 0.31 × 0.04
Data collection
DiffractometerAgilent Xcalibur Gemini ultra
diffractometer with Eos detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.709, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4723, 2357, 2180
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.05
No. of reflections2357
No. of parameters182
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and WinGX32 (Farrugia, 2012), publCIF (Westrip, 2010).

Acknowledgements top

The authors are grateful to the National Science Council of Taiwan for financial support.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shita, S., Chakraborty, J., Samanta, B., Rosair, G. M. & Mitra, S. (2009). Z. Naturforsch. Teil B, 64, 403–408.

Sun, X. (2008). Acta Cryst. E64, m33.

Talukder, P., Datta, A., Mitra, S. & Rosair, G. (2004). Z. Naturforsch. Teil B, 59, 655–660.

Wang, H., Lang, Y. & Wang, S. (2012). Acta Cryst. E68, m540.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yu, J. (2012). Acta Cryst. E68, m275.