supplementary materials


nr2046 scheme

Acta Cryst. (2013). E69, m448-m449    [ doi:10.1107/S1600536813018485 ]

(2,2'-Bipyridine-[kappa]2N,N')tetrakis(dimethyl sulfoxide-[kappa]O)copper(II) bis(perchlorate)

T. Iskenderov

Abstract top

The title compound, [Cu(C2H6OS)4(C10H8N2)](ClO4)2, contains a CuII ion with a distorted octahedral coordination environment, bonded by four O atoms of the monodentate dimethyl sulfoxide ligands and two N atoms of the bidentate chelating 2,2'-bipyridine ligand. The equatorial Cu-N and Cu-O bond lengths are in the range 1.979 (2)-1.998 (3) Å. The axial Cu-O bond distances are 2.365 (2) and 2.394 (2) Å. In the crystal, the complex cations and perchlorate anions are connected by numerous C-H...O hydrogen bonds, which leads to additional stabilization of the structure. The perchlorate anion is disordered over two sets of sites with a 0.716 (3):0.284 (3) occupancy ratio.

Comment top

2,2'-Bipyridyl (2,2'-bipy) is a well known neutral bidentate ligand which is widely used in coordination chemistry, in particular, for the preparation of mixed ligand complexes (Fritsky et al., 2004; Kanderal et al., 2005). It is also often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2006). The title compound was obtained unintentionally during an attempt to synthesize a mixed-ligand complex of CuII with pyridine-2-hydroxamic acid in the framework of our project on study of metal complexes of heterocyclic hydroxamic acids (Świątek-Kozłowska et al., 2002; Golenya et al., 2012a). The crystal structure of the title complex has not hitherto been reported.

The title compound, [Cu(C10H8N2)(C2H6OS)4](ClO4)2, consists of a cationic Cu2+ complex and two perchlorate anions (Fig. 1). The central atom is in distorted octahedral environment formed by two nitrogen donor atoms of bidentately coordinated molecule of 2,2'-bipyridine and by four oxygen atoms of dimethyl sulfoxide molecules. The equatorial plane of the coordination polyhedron is consisting of two nitrogen atoms of 2,2'-bipyridyl and two oxygen atoms of two dimethyl sulfoxide ligands. The axial positions are occupied by oxygen atoms of other two dimethyl sulfoxide ligands. The equatorial Cu—N and Cu—O bond lengths are in the range 1.979 (2) – 1.998 (3) Å. The axial Cu—O bond distances are 2.365 (2) Å and 2.394 (2) Å. The coordination bond lengths Cu—N and Cu—O are typical for distorted octahedral CuII complexes with the nitrogen and oxygen donors (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Sliva et al., 1997). The N2—Cu1—N1 bite angle is decreased to 81.45 (11)°, which is a consequence of the formation of five-membered chelate ring. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2000; Iskenderov et al., 2009; Moroz et al., 2010; Moroz et al., 2012).

In the crystal structure, the complex cations and perchlorate anions are connected by numerous intermolecular C—H···O hydrogen bonds, in which the aromatic and methyl carbon atoms act as donors while the perchlorate oxygen atoms act as acceptors, which contribute to the stabilization of the structure (Fig. 2). There are also stacking interactions between the aromatic rings of the 2,2'-bipyridine molecules belonging to the neighboring complex molecules with shortest non-covalent contacts C(2)···C(6) (-x, 1 - y, -z) = 3.369 (5) and C(4)···C(10) (-x, 1 - y, -z) = 3.390 (5) Å (Fig. 2).

Related literature top

For applications of the 2,2'-bipyridyl ligand, see: Fritsky et al. (2004, 2006); Kanderal et al. (2005). For related structures, see: Fritsky et al. (1998, 2000); Moroz et al. (2010, 2012); Sliva et al. (1997); Świątek-Kozłowska et al. (2000, 2002); Iskenderov et al. (2009); Golenya et al. (2012a). For the synthesis, see: Golenya et al. (2012b).

Experimental top

The title compound was obtained unexpectedly during an attempt to synthesize a mixed-ligand complex of CuII with pyridine-2-hydroxamic acid (Golenya et al., 2012b) in aqueous methanol solution. Cu(ClO4)2.6H2O in methanol (0.0370 g, 0.1 mmol) was added to solution of 2,2'-bipyridine (0.156 g, 1 mmol) and pyridine-2-hydroxamic acid (0.069 g, 0.5 mmol) in methanol (7 ml), afterwards the obtained transparent blue solution left for evaporation in the air at ambient temperature. The obtained dry solid residue was dissolved in 5 ml DMSO and set for crystallization by slow diffusion of 2-propanol vapors at room temperature. During 12 h the blue crystals suitable for X-ray analysis were obtained. They were filtered off, washed with 2-propanol and dried in the air. Yield: 73%. Elemental analysis calc. (%) for C18H32Cl2CuN2O12S4: C 29.63; H 4.42; N 3.84; found: C 29.78; H 4.60; N 3.63.

Refinement top

The C—H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95(CH), 0.98(CH3) and Uiso = 1.2 or 1.5 Ueq(parent atom) for CH and CH3, respectively. One of the perchlorate anions were found to be disordered over two positions with occupancy factors 0.716/0.284. All atoms were refined with anisotropic displacement parameters except the oxygen atoms of the disordered perchlorate which were refined isotropically. Cl—O bond distances and O···O separations of both (minor and major) fractions of the disordered perchlorate anion as well as the ordered perchlorate (as a model) were restrained to have identical values. For each corresponding pair of the oxygen atoms of the disordered perchlorate anion, the isotropic displacement parameters were restrained to have identical values.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 40% probability level. Both orientations for the disordered perchlorate anion are shown. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. Only major orientation is shown for the disordered perchlorate anion.
(2,2'-Bipyridine-κ2N,N')tetrakis(dimethyl sulfoxide-κO)copper(II) bis(perchlorate) top
Crystal data top
[Cu(C2H6OS)4(C10H8N2)](ClO4)2F(000) = 1508
Mr = 731.14Dx = 1.580 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2567 reflections
a = 10.8050 (5) Åθ = 3.0–25.5°
b = 11.6470 (5) ŵ = 1.21 mm1
c = 24.5210 (8) ÅT = 120 K
β = 94.984 (5)°Block, blue
V = 3074.2 (2) Å30.33 × 0.23 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
13140 independent reflections
Radiation source: fine-focus sealed tube6565 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.074
Detector resolution: 9 pixels mm-1θmax = 36.7°, θmin = 3.0°
φ scans and ω scans with κ offseth = 1317
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
k = 1519
Tmin = 0.747, Tmax = 0.862l = 4031
40246 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0589P)2]
where P = (Fo2 + 2Fc2)/3
13140 reflections(Δ/σ)max < 0.001
362 parametersΔρmax = 1.21 e Å3
10 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu(C2H6OS)4(C10H8N2)](ClO4)2V = 3074.2 (2) Å3
Mr = 731.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8050 (5) ŵ = 1.21 mm1
b = 11.6470 (5) ÅT = 120 K
c = 24.5210 (8) Å0.33 × 0.23 × 0.12 mm
β = 94.984 (5)°
Data collection top
Nonius KappaCCD
diffractometer
13140 independent reflections
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
6565 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.862Rint = 0.074
40246 measured reflectionsθmax = 36.7°
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.160Δρmax = 1.21 e Å3
S = 1.07Δρmin = 0.84 e Å3
13140 reflectionsAbsolute structure: ?
362 parametersAbsolute structure parameter: ?
10 restraintsRogers parameter: ?
Special details top

Experimental. The C—H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95(CH), 0.98(CH3) and Uiso = 1.2 or 1.5 Ueq(parent atom) for CH and CH3, respectively. One of the perchlorate anions were found to be disordered over two positions with occupancy factors 0.716/0.284. All atoms were refined with anisotropic displacement parameters except the oxygen atoms of the disordered perchlorate which were refined isotropically. Cl—O bond distances and O···O separations of both (minor and major) fractions of the disordered perchlorate anion as well as the ordered perchlorate (as a model) were restrained to have identical values. For each corresponding pair of the oxygen atoms of the disordered perchlorate anion, the isotropic displacement parameters were restrained to have identical values.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.01095 (4)0.25254 (3)0.093944 (15)0.01663 (10)
S10.22872 (8)0.37353 (8)0.15620 (4)0.0260 (2)
S20.10117 (8)0.03071 (7)0.13267 (3)0.02201 (19)
S30.02546 (8)0.21930 (7)0.22086 (3)0.02254 (19)
S40.24417 (8)0.03374 (7)0.06730 (3)0.02011 (18)
O10.1237 (2)0.4013 (2)0.12111 (10)0.0256 (5)
O20.1282 (2)0.14612 (18)0.10375 (9)0.0185 (5)
O30.0926 (2)0.22831 (19)0.16856 (9)0.0224 (5)
O40.1196 (2)0.0936 (2)0.06162 (9)0.0225 (5)
Cl10.46540 (9)0.22816 (8)0.07645 (4)0.0300 (2)
O50.5215 (3)0.2784 (3)0.12148 (12)0.0607 (10)
O60.3432 (3)0.2715 (2)0.07428 (13)0.0490 (8)
O70.4600 (3)0.1059 (3)0.08316 (15)0.0599 (10)
O80.5387 (3)0.2541 (3)0.02657 (11)0.0535 (9)
Cl2_10.4834 (4)0.2572 (3)0.25477 (14)0.0236 (7)0.716 (3)
O9_10.4557 (4)0.1434 (3)0.26534 (16)0.0426 (10)*0.716 (3)
O10_10.4453 (6)0.3286 (5)0.2980 (2)0.0806 (16)*0.716 (3)
O11_10.6132 (5)0.2703 (5)0.2537 (2)0.0843 (17)*0.716 (3)
O12_10.4289 (5)0.2943 (4)0.20296 (19)0.0643 (13)*0.716 (3)
Cl2_20.4738 (9)0.2835 (7)0.2563 (4)0.0217 (17)0.284 (3)
O9_20.3653 (8)0.3114 (8)0.2807 (4)0.0426 (10)*0.284 (3)
O10_20.5733 (10)0.2666 (10)0.2973 (5)0.0806 (16)*0.284 (3)
O11_20.5087 (11)0.3809 (9)0.2254 (5)0.0843 (17)*0.284 (3)
O12_20.4559 (10)0.1942 (8)0.2174 (4)0.0643 (13)*0.284 (3)
N10.0439 (2)0.2824 (2)0.01530 (11)0.0165 (6)
N20.1453 (2)0.3611 (2)0.07722 (10)0.0169 (6)
C10.1461 (3)0.2403 (3)0.01254 (13)0.0199 (7)
H10.20110.19350.00600.024*
C20.1736 (3)0.2635 (3)0.06822 (14)0.0235 (7)
H20.24710.23380.08720.028*
C30.0930 (3)0.3302 (3)0.09514 (13)0.0229 (7)
H30.10930.34550.13310.028*
C40.0120 (3)0.3746 (3)0.06631 (13)0.0227 (8)
H40.06820.42140.08410.027*
C50.2357 (3)0.4606 (3)0.00510 (14)0.0251 (8)
H50.23260.48150.03240.030*
C60.3321 (4)0.4966 (3)0.04112 (15)0.0292 (9)
H60.39670.54250.02870.035*
C70.3345 (3)0.4653 (3)0.09585 (15)0.0243 (8)
H70.40010.49000.12150.029*
C80.2394 (3)0.3976 (3)0.11236 (14)0.0206 (7)
H80.24060.37620.14980.025*
C90.0340 (3)0.3495 (3)0.01083 (13)0.0182 (7)
C100.1433 (3)0.3933 (3)0.02420 (13)0.0183 (7)
C120.3584 (3)0.3309 (4)0.11044 (16)0.0356 (9)
H12A0.37730.39150.08320.053*
H12B0.43070.31810.13120.053*
H12C0.33820.25970.09180.053*
C130.2864 (4)0.5103 (4)0.17568 (17)0.0423 (11)
H13A0.22330.54900.20030.063*
H13B0.36200.49940.19450.063*
H13C0.30550.55750.14290.063*
C140.1260 (4)0.0737 (3)0.08036 (15)0.0320 (9)
H14A0.20800.06210.06080.048*
H14B0.12170.15060.09670.048*
H14C0.06190.06610.05470.048*
C150.2366 (4)0.0083 (4)0.16771 (16)0.0364 (10)
H15A0.23960.06550.19690.055*
H15B0.23420.06890.18370.055*
H15C0.31060.01590.14190.055*
C160.0575 (4)0.3504 (3)0.25593 (16)0.0404 (10)
H16A0.14730.36450.25910.061*
H16B0.02820.34580.29260.061*
H16C0.01480.41330.23550.061*
C170.1207 (4)0.1252 (3)0.26321 (15)0.0332 (9)
H17A0.11330.04710.24850.050*
H17B0.09390.12630.30040.050*
H17C0.20740.15040.26420.050*
C180.2790 (4)0.0049 (4)0.13850 (14)0.0354 (10)
H18A0.27350.07620.15930.053*
H18B0.36320.02650.14460.053*
H18C0.21920.05090.15060.053*
C190.3605 (3)0.1404 (3)0.06048 (17)0.0324 (9)
H19A0.34220.18190.02600.049*
H19B0.44200.10340.06060.049*
H19C0.36120.19440.09110.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0172 (2)0.01757 (19)0.01494 (18)0.00310 (17)0.00027 (14)0.00218 (16)
S10.0200 (4)0.0336 (5)0.0251 (4)0.0051 (4)0.0070 (4)0.0087 (4)
S20.0234 (5)0.0188 (4)0.0229 (4)0.0060 (3)0.0037 (3)0.0044 (3)
S30.0262 (5)0.0238 (4)0.0173 (4)0.0015 (4)0.0005 (3)0.0019 (3)
S40.0205 (4)0.0190 (4)0.0211 (4)0.0024 (3)0.0030 (3)0.0007 (3)
O10.0245 (13)0.0220 (13)0.0321 (14)0.0021 (10)0.0139 (11)0.0001 (10)
O20.0199 (12)0.0161 (11)0.0193 (11)0.0009 (9)0.0007 (9)0.0031 (9)
O30.0237 (13)0.0249 (13)0.0177 (11)0.0068 (10)0.0023 (10)0.0041 (9)
O40.0174 (12)0.0230 (12)0.0267 (13)0.0047 (10)0.0001 (10)0.0016 (10)
Cl10.0255 (5)0.0340 (5)0.0313 (5)0.0103 (4)0.0071 (4)0.0072 (4)
O50.0444 (19)0.113 (3)0.0248 (15)0.0251 (19)0.0071 (14)0.0041 (17)
O60.0458 (19)0.0425 (18)0.061 (2)0.0143 (15)0.0204 (16)0.0078 (15)
O70.048 (2)0.0341 (17)0.093 (3)0.0076 (15)0.0144 (18)0.0270 (17)
O80.065 (2)0.067 (2)0.0276 (15)0.0458 (18)0.0013 (14)0.0026 (15)
Cl2_10.0311 (11)0.0185 (16)0.0215 (9)0.0024 (11)0.0034 (7)0.0011 (9)
Cl2_20.034 (3)0.012 (3)0.020 (2)0.001 (2)0.0045 (18)0.0071 (19)
N10.0179 (14)0.0133 (13)0.0187 (13)0.0033 (10)0.0034 (11)0.0018 (10)
N20.0151 (14)0.0166 (13)0.0190 (13)0.0013 (11)0.0016 (11)0.0001 (11)
C10.0211 (17)0.0176 (16)0.0206 (16)0.0023 (14)0.0009 (13)0.0018 (13)
C20.0243 (18)0.0236 (18)0.0217 (16)0.0047 (15)0.0028 (14)0.0014 (14)
C30.032 (2)0.0213 (17)0.0151 (16)0.0091 (15)0.0024 (14)0.0009 (13)
C40.034 (2)0.0160 (16)0.0196 (17)0.0054 (14)0.0092 (15)0.0030 (13)
C50.031 (2)0.0203 (18)0.0255 (18)0.0012 (15)0.0129 (16)0.0001 (14)
C60.030 (2)0.0202 (18)0.040 (2)0.0052 (15)0.0146 (18)0.0044 (16)
C70.0159 (17)0.0197 (17)0.037 (2)0.0009 (14)0.0004 (15)0.0044 (15)
C80.0163 (17)0.0185 (16)0.0262 (17)0.0007 (13)0.0024 (14)0.0016 (14)
C90.0206 (17)0.0161 (15)0.0188 (16)0.0069 (13)0.0071 (13)0.0006 (13)
C100.0228 (18)0.0118 (15)0.0212 (16)0.0025 (13)0.0056 (13)0.0009 (12)
C120.020 (2)0.049 (3)0.038 (2)0.0017 (18)0.0040 (17)0.0008 (19)
C130.036 (2)0.053 (3)0.039 (2)0.017 (2)0.0120 (19)0.005 (2)
C140.036 (2)0.0224 (19)0.037 (2)0.0001 (17)0.0006 (18)0.0047 (16)
C150.041 (2)0.042 (2)0.027 (2)0.0163 (19)0.0094 (18)0.0057 (17)
C160.054 (3)0.034 (2)0.032 (2)0.004 (2)0.004 (2)0.0119 (18)
C170.033 (2)0.044 (2)0.0229 (18)0.0091 (19)0.0058 (16)0.0110 (17)
C180.032 (2)0.049 (3)0.0256 (19)0.0172 (19)0.0033 (17)0.0146 (17)
C190.024 (2)0.0237 (19)0.050 (2)0.0020 (16)0.0091 (18)0.0023 (17)
Geometric parameters (Å, º) top
Cu1—O21.979 (2)C3—C41.384 (5)
Cu1—O31.981 (2)C3—H30.9500
Cu1—N21.994 (3)C4—C91.392 (4)
Cu1—N11.998 (3)C4—H40.9500
Cu1—O42.365 (2)C5—C61.371 (5)
Cu1—O12.394 (2)C5—C101.383 (4)
S1—O11.517 (2)C5—H50.9500
S1—C121.788 (4)C6—C71.389 (5)
S1—C131.791 (4)C6—H60.9500
S2—O21.536 (2)C7—C81.384 (5)
S2—C141.771 (4)C7—H70.9500
S2—C151.779 (4)C8—H80.9500
S3—O31.531 (2)C9—C101.488 (5)
S3—C161.772 (4)C12—H12A0.9800
S3—C171.775 (4)C12—H12B0.9800
S4—O41.512 (2)C12—H12C0.9800
S4—C191.785 (4)C13—H13A0.9800
S4—C181.786 (4)C13—H13B0.9800
Cl1—O61.419 (3)C13—H13C0.9800
Cl1—O51.430 (3)C14—H14A0.9800
Cl1—O81.431 (3)C14—H14B0.9800
Cl1—O71.435 (3)C14—H14C0.9800
Cl2_1—O9_11.388 (5)C15—H15A0.9800
Cl2_1—O11_11.413 (7)C15—H15B0.9800
Cl2_1—O12_11.421 (6)C15—H15C0.9800
Cl2_1—O10_11.436 (6)C16—H16A0.9800
Cl2_2—O9_21.399 (9)C16—H16B0.9800
Cl2_2—O12_21.413 (8)C16—H16C0.9800
Cl2_2—O10_21.421 (10)C17—H17A0.9800
Cl2_2—O11_21.432 (9)C17—H17B0.9800
N1—C11.340 (4)C17—H17C0.9800
N1—C91.351 (4)C18—H18A0.9800
N2—C81.343 (4)C18—H18B0.9800
N2—C101.352 (4)C18—H18C0.9800
C1—C21.398 (5)C19—H19A0.9800
C1—H10.9500C19—H19B0.9800
C2—C31.377 (5)C19—H19C0.9800
C2—H20.9500
O2—Cu1—O394.62 (9)C6—C5—C10119.1 (3)
O2—Cu1—N2174.98 (10)C6—C5—H5120.5
O3—Cu1—N290.37 (10)C10—C5—H5120.5
O2—Cu1—N193.53 (10)C5—C6—C7119.5 (3)
O3—Cu1—N1170.76 (10)C5—C6—H6120.3
N2—Cu1—N181.45 (11)C7—C6—H6120.3
O2—Cu1—O487.42 (8)C8—C7—C6118.7 (3)
O3—Cu1—O490.21 (9)C8—C7—H7120.6
N2—Cu1—O492.05 (9)C6—C7—H7120.6
N1—Cu1—O485.81 (9)N2—C8—C7122.2 (3)
O2—Cu1—O186.15 (8)N2—C8—H8118.9
O3—Cu1—O194.52 (9)C7—C8—H8118.9
N2—Cu1—O193.98 (9)N1—C9—C4121.6 (3)
N1—Cu1—O190.35 (9)N1—C9—C10114.9 (3)
O4—Cu1—O1172.30 (8)C4—C9—C10123.5 (3)
O1—S1—C12106.68 (17)N2—C10—C5122.1 (3)
O1—S1—C13104.87 (17)N2—C10—C9113.9 (3)
C12—S1—C1398.2 (2)C5—C10—C9124.0 (3)
O2—S2—C14104.83 (16)S1—C12—H12A109.5
O2—S2—C15102.73 (17)S1—C12—H12B109.5
C14—S2—C1599.78 (19)H12A—C12—H12B109.5
O3—S3—C16105.11 (17)S1—C12—H12C109.5
O3—S3—C17103.87 (15)H12A—C12—H12C109.5
C16—S3—C1799.7 (2)H12B—C12—H12C109.5
O4—S4—C19107.37 (15)S1—C13—H13A109.5
O4—S4—C18106.68 (16)S1—C13—H13B109.5
C19—S4—C1897.6 (2)H13A—C13—H13B109.5
S1—O1—Cu1120.43 (13)S1—C13—H13C109.5
S2—O2—Cu1119.24 (13)H13A—C13—H13C109.5
S3—O3—Cu1125.31 (14)H13B—C13—H13C109.5
S4—O4—Cu1142.59 (14)S2—C14—H14A109.5
O6—Cl1—O5110.0 (2)S2—C14—H14B109.5
O6—Cl1—O8109.9 (2)H14A—C14—H14B109.5
O5—Cl1—O8109.46 (18)S2—C14—H14C109.5
O6—Cl1—O7109.21 (19)H14A—C14—H14C109.5
O5—Cl1—O7109.5 (2)H14B—C14—H14C109.5
O8—Cl1—O7108.8 (2)S2—C15—H15A109.5
O9_1—Cl2_1—O11_1109.7 (4)S2—C15—H15B109.5
O9_1—Cl2_1—O12_1112.2 (3)H15A—C15—H15B109.5
O11_1—Cl2_1—O12_1106.6 (4)S2—C15—H15C109.5
O9_1—Cl2_1—O10_1109.6 (3)H15A—C15—H15C109.5
O11_1—Cl2_1—O10_1107.4 (4)H15B—C15—H15C109.5
O12_1—Cl2_1—O10_1111.2 (4)S3—C16—H16A109.5
O9_2—Cl2_2—O12_2112.9 (7)S3—C16—H16B109.5
O9_2—Cl2_2—O10_2109.9 (7)H16A—C16—H16B109.5
O12_2—Cl2_2—O10_2115.2 (8)S3—C16—H16C109.5
O9_2—Cl2_2—O11_2108.1 (7)H16A—C16—H16C109.5
O12_2—Cl2_2—O11_2104.7 (7)H16B—C16—H16C109.5
O10_2—Cl2_2—O11_2105.4 (7)S3—C17—H17A109.5
C1—N1—C9119.4 (3)S3—C17—H17B109.5
C1—N1—Cu1126.2 (2)H17A—C17—H17B109.5
C9—N1—Cu1114.4 (2)S3—C17—H17C109.5
C8—N2—C10118.5 (3)H17A—C17—H17C109.5
C8—N2—Cu1126.3 (2)H17B—C17—H17C109.5
C10—N2—Cu1115.0 (2)S4—C18—H18A109.5
N1—C1—C2121.5 (3)S4—C18—H18B109.5
N1—C1—H1119.2H18A—C18—H18B109.5
C2—C1—H1119.2S4—C18—H18C109.5
C3—C2—C1119.2 (3)H18A—C18—H18C109.5
C3—C2—H2120.4H18B—C18—H18C109.5
C1—C2—H2120.4S4—C19—H19A109.5
C2—C3—C4119.4 (3)S4—C19—H19B109.5
C2—C3—H3120.3H19A—C19—H19B109.5
C4—C3—H3120.3S4—C19—H19C109.5
C3—C4—C9118.9 (3)H19A—C19—H19C109.5
C3—C4—H4120.5H19B—C19—H19C109.5
C9—C4—H4120.5
C12—S1—O1—Cu185.9 (2)O1—Cu1—N1—C998.2 (2)
C13—S1—O1—Cu1170.58 (18)O2—Cu1—N2—C8179 (55)
O2—Cu1—O1—S124.70 (16)O3—Cu1—N2—C84.9 (3)
O3—Cu1—O1—S169.64 (17)N1—Cu1—N2—C8179.4 (3)
N2—Cu1—O1—S1160.33 (17)O4—Cu1—N2—C895.1 (3)
N1—Cu1—O1—S1118.21 (17)O1—Cu1—N2—C889.7 (3)
O4—Cu1—O1—S158.2 (7)O2—Cu1—N2—C103.6 (12)
C14—S2—O2—Cu1109.80 (17)O3—Cu1—N2—C10170.5 (2)
C15—S2—O2—Cu1146.32 (17)N1—Cu1—N2—C105.2 (2)
O3—Cu1—O2—S242.44 (15)O4—Cu1—N2—C1080.2 (2)
N2—Cu1—O2—S2131.6 (11)O1—Cu1—N2—C1095.0 (2)
N1—Cu1—O2—S2133.21 (15)C9—N1—C1—C20.4 (5)
O4—Cu1—O2—S247.57 (14)Cu1—N1—C1—C2177.8 (2)
O1—Cu1—O2—S2136.67 (15)N1—C1—C2—C30.8 (5)
C16—S3—O3—Cu1106.8 (2)C1—C2—C3—C41.3 (5)
C17—S3—O3—Cu1148.92 (19)C2—C3—C4—C90.7 (5)
O2—Cu1—O3—S341.26 (17)C10—C5—C6—C70.3 (5)
N2—Cu1—O3—S3139.26 (17)C5—C6—C7—C80.5 (5)
N1—Cu1—O3—S3166.9 (5)C10—N2—C8—C70.9 (5)
O4—Cu1—O3—S3128.69 (16)Cu1—N2—C8—C7174.3 (2)
O1—Cu1—O3—S345.24 (17)C6—C7—C8—N20.1 (5)
C19—S4—O4—Cu149.5 (3)C1—N1—C9—C41.1 (4)
C18—S4—O4—Cu154.3 (3)Cu1—N1—C9—C4177.3 (2)
O2—Cu1—O4—S4133.1 (2)C1—N1—C9—C10179.0 (3)
O3—Cu1—O4—S438.5 (2)Cu1—N1—C9—C102.7 (3)
N2—Cu1—O4—S451.9 (2)C3—C4—C9—N10.5 (5)
N1—Cu1—O4—S4133.1 (2)C3—C4—C9—C10179.5 (3)
O1—Cu1—O4—S4166.6 (5)C8—N2—C10—C51.1 (5)
O2—Cu1—N1—C12.6 (3)Cu1—N2—C10—C5174.6 (2)
O3—Cu1—N1—C1154.5 (5)C8—N2—C10—C9179.1 (3)
N2—Cu1—N1—C1177.5 (3)Cu1—N2—C10—C95.2 (3)
O4—Cu1—N1—C189.8 (3)C6—C5—C10—N20.5 (5)
O1—Cu1—N1—C183.5 (3)C6—C5—C10—C9179.7 (3)
O2—Cu1—N1—C9175.6 (2)N1—C9—C10—N21.6 (4)
O3—Cu1—N1—C923.7 (7)C4—C9—C10—N2178.4 (3)
N2—Cu1—N1—C94.2 (2)N1—C9—C10—C5178.1 (3)
O4—Cu1—N1—C988.5 (2)C4—C9—C10—C51.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.952.523.046 (4)115
C6—H6···O8i0.952.473.255 (5)140
C8—H8···O30.952.422.946 (4)115
C4—H4···O1ii0.952.353.219 (4)151
C16—H16B···O5iii0.982.563.411 (5)145
C17—H17B···O5iii0.982.403.306 (5)153
C15—H15C···O7iv0.982.513.320 (5)140
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H6OS)4(C10H8N2)](ClO4)2
Mr731.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.8050 (5), 11.6470 (5), 24.5210 (8)
β (°) 94.984 (5)
V3)3074.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.33 × 0.23 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(MULABS; Blessing, 1995)
Tmin, Tmax0.747, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
40246, 13140, 6565
Rint0.074
(sin θ/λ)max1)0.840
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.160, 1.07
No. of reflections13140
No. of parameters362
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.84

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.952.523.046 (4)115.1
C6—H6···O8i0.952.473.255 (5)139.8
C8—H8···O30.952.422.946 (4)114.6
C4—H4···O1ii0.952.353.219 (4)151.1
C16—H16B···O5iii0.982.563.411 (5)145.0
C17—H17B···O5iii0.982.403.306 (5)152.9
C15—H15C···O7iv0.982.513.320 (5)140.2
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z.
Acknowledgements top

The financial support from the State Fund for Fundamental Researches of Ukraine (grant No. GP/F36/032) is gratefully acknowledged. We also thank Dr E. B. Rusanov, Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, for collecting the X-ray data.

references
References top

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.

Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.

Fritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255–3258.

Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.

Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Dalton Trans. 41, 9427–9430.

Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Inorg. Chem. 51, 6221–6227.

Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124.

Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.

Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.

Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.

Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.

Świątek-Kozłowska, J., Gumienna-Kontecka, E., Dobosz, A., Golenya, I. A. & Fritsky, I. O. (2002). J. Chem. Soc. Dalton Trans. pp. 4639–4643.